Abstract:
A semiconductor component includes an auxiliary semiconductor device configured to emit radiation. The semiconductor component further includes a semiconductor device. An electrical coupling and an optical coupling between the auxiliary semiconductor device and the semiconductor device are configured to trigger emission of radiation by the auxiliary semiconductor device and to trigger avalanche breakdown in the semiconductor device by absorption of the radiation in the semiconductor device. The semiconductor device includes a pn junction between a first layer of a first conductivity type buried below a surface of a semiconductor body and a doped semiconductor region of a second conductivity type disposed between the surface and the first layer.
Abstract:
An integrated circuit having an ESD protection structure is described. One embodiment includes a circuit section interconnected with a first terminal and with a second terminal and being operable at voltage differences between the first terminal and second terminal of greater than +10 V and less than −10 V. The integrated circuit additionally includes an ESD protection structure operable to protect the circuit section against electrostatic discharge between the first terminal and the second terminal. The ESD protection structure is operable with voltage differences between the first and second terminals of greater than +10 V and less than −10 V without triggering. The ESD protection structure is electrically and optically coupled to a photon source such that photons emitted by the photon source upon ESD pulse loading are absorbable in the ESD protection structure and an avalanche breakdown is initiatable by electron-hole pairs generated by the absorbed photons.
Abstract:
A method of triggering avalanche breakdown in a semiconductor device includes providing an electrical coupling and an optical coupling between an auxiliary semiconductor device configured to emit radiation and the semiconductor device including a pn junction between a first layer of a first conductivity type buried below a surface of a semiconductor body and a doped semiconductor region of a second conductivity type disposed between the surface and the first layer. The electrical and optical coupling includes triggering emission of radiation by the auxiliary semiconductor device and triggering avalanche breakdown in the semiconductor device by absorption of the radiation in the semiconductor device.
Abstract:
A method of triggering avalanche breakdown in a semiconductor device includes providing an electrical coupling and an optical coupling between an auxiliary semiconductor device configured to emit radiation and the semiconductor device including a pn junction between a first layer of a first conductivity type buried below a surface of a semiconductor body and a doped semiconductor region of a second conductivity type disposed between the surface and the first layer. The electrical and optical coupling includes triggering emission of radiation by the auxiliary semiconductor device and triggering avalanche breakdown in the semiconductor device by absorption of the radiation in the semiconductor device.
Abstract:
An apparatus and a method for generating signals for ESD stress testing an electronic device are disclosed. In an embodiment the apparatus is configured to receive a source signal including a source pulse, delay the source pulse to generate a test signal including a test pulse with a pulse width in an ESD time range and generate an auxiliary signal including an auxiliary pulse with a pulse width in the ESD time range.
Abstract:
An apparatus and a method for generating signals for ESD stress testing an electronic device are disclosed. In an embodiment the apparatus is configured to receive a source signal including a source pulse, delay the source pulse to generate a test signal including a test pulse with a pulse width in an ESD time range and generate an auxiliary signal including an auxiliary pulse with a pulse width in the ESD time range.
Abstract:
An integrated circuit having an ESD protection structure is described. One embodiment includes a circuit section interconnected with a first terminal and with a second terminal and being operable at voltage differences between the first terminal and second terminal of greater than +10 V and less than −10 V. The integrated circuit additionally includes an ESD protection structure operable to protect the circuit section against electrostatic discharge between the first terminal and the second terminal. The ESD protection structure is operable with voltage differences between the first and second terminals of greater than +10 V and less than −10 V without triggering. The ESD protection structure is electrically and optically coupled to a photon source such that photons emitted by the photon source upon ESD pulse loading are absorbable in the ESD protection structure and an avalanche breakdown is initiatable by electron-hole pairs generated by the absorbed photons.
Abstract:
A semiconductor component includes an auxiliary semiconductor device configured to emit radiation. The semiconductor component further includes a semiconductor device. An electrical coupling and an optical coupling between the auxiliary semiconductor device and the semiconductor device are configured to trigger emission of radiation by the auxiliary semiconductor device and to trigger avalanche breakdown in the semiconductor device by absorption of the radiation in the semiconductor device. The semiconductor device includes a pn junction between a first layer of a first conductivity type buried below a surface of a semiconductor body and a doped semiconductor region of a second conductivity type disposed between the surface and the first layer.