Abstract:
Methods, apparatus, and systems for preventing false packet acceptance in high-speed links. Under one aspect, correctable symbol errors are detected, and determination is made to whether a symbol error rate or ratio (SER) exceeds an SER threshold. In response to detection of such a condition, the link is disconnected or temporarily paused. The value for the SER threshold is determined using a statistical analysis of various link parameters to meet desired performance levels, such as a mean time to false packet acceptance (MTTFPA) of >approximately 15 billion years while providing a mean time to disconnect of >100 years.
Abstract:
Methods and apparatus for Ethernet auto-negotiation (AN) with parallel detect for 10G DAC or other non-auto-negotiated modes. AN base pages are transmitted from an Ethernet apparatus to advertise the ability to support at least one Institute of Electrical and Electronics Engineers (IEEE) 802.3 Ethernet specification supporting AN. A receiver and associated processing circuitry is configured to perform two detection modes in parallel, including a first detection mode that looks for a valid signal transmitted from an Ethernet link peer that does not support AN and a second detection mode looking for AN pages from an IEEE 802.3 Ethernet link peer that supports AN. If the link peer does not support AN, an Ethernet link is set up to use signaling in accordance with the Ethernet specification that does not support AN. If the link peer supports AN, an Ethernet link is set up using a corresponding IEEE 802.3 Ethernet link supporting AN. Supported non-AN Ethernet links include 10G DAC links.
Abstract:
Technologies for autonegotiation of communications operational modes over copper cable include a network port logic having a communication link coupled to a remote link partner. The network port logic may start an autonegotiation protocol upon reset, when the link is broken, or upon manual renegotiation. The network port logic transmits an autonegotiation page to the remote link partner that indicates single-lane communications ability over copper cable. The network port logic receives an autonegotiation page from the link partner indicating single-lane communications ability over copper cable. If the network port logic and link partner have a common single-lane communication ability, the link may be activated. The autonegotiation pages may be base pages or next pages. The single-lane communication ability may be indicated by one or more bits of the autonegotation pages. The link may be established at 1 gigabit or 10 gigabits per second. Other embodiments are described and claimed.
Abstract:
Technologies for high-speed data transmission include a network port logic having one or more communication lanes coupled to a forward error correction (FEC) sublayer and a physical coding sublayer (PCS). To transmit data, the PCS encodes the data to be transmitted into encoded data blocks using a 66 b/64 b line code and inserts alignment marker blocks after every 16,383 encoded data blocks. The FEC encodes the encoded data blocks into 80-block FEC codewords starting at a predefined offset from an alignment marker. Thus, each alignment marker is at one of five predefined offsets from the beginning of an FEC codeword. Each alignment marker may include a unique block type field usable with FEC encoding. The PCS may include one or more logical lanes, each operating at 25 Gb/s. Embodiments of the network port logic may include a single PCS lane or sixteen PCS lanes. Other embodiments are described and claimed.
Abstract:
Embodiments of the present disclosure provide configurations for testing arrangements for testing multi-lane active cables. In one embodiment, a testing arrangement may comprise a testing module comprising a pattern generator to be coupled with an active cable having a plurality of lanes to generate a test pattern to be transmitted over the active cable, wherein the test pattern is to be transmitted at least over two or more lanes of the active cable that are concatenated, and a processing unit to be coupled with the active cable to process a result of the transmission of the test pattern over the active cable. The arrangement may further include a plurality of testing cables to concatenate two or more of the lanes of the active cable, to enable the transmission of the test pattern over the concatenated lanes of the active cable. Other embodiments may be described and/or claimed.
Abstract:
A sample voltage is received from a device at a first slicer element and a second slicer element. A decision by the first slicer element based on the sample voltage is identified and compared with a decision of the second slicer element based on the sample voltage. The decision of the second slicer element is to be generated from a comparison of the sample voltage with a reference voltage for the second slicer element. Comparing the decisions can be the basis of a soft error ratio determined for a device.
Abstract:
Methods, apparatus and systems for measuring signal transition times for a four-level pulse modulated amplitude (PAM4) transmitter. During a test procedure, a PAM4 transmitter is configured to repetitively transmit a PAM4 symbol test pattern, which is captured as a signal waveform. The test pattern includes at least one rising signal sequence having a PAM4 symbol pattern of at least three −1 PAM4 symbols followed by at least three +1 PAM4 symbols and at least one falling signal sequence having a PAM4 symbol pattern of at least three +1 PAM4 symbols followed by at least three −1 PAM4 symbols. A voltage modulation amplitude (VMA) level for each of a −1 and +1 PAM4 signal level is measured for at least one rising signal sequence and falling signal sequence to derive 20% and 80% VMA levels. A rise transition time is then determined by measuring the time interval between when a rising signal crosses the 20% and 80% VMA levels, and a fall transition time is determined by measuring the time interval between when a falling signal crosses the 80% and 20% VMA levels.
Abstract:
Methods, apparatus, and systems for preventing false packet acceptance in high-speed links. Under one aspect, correctable symbol errors are detected, and determination is made to whether a symbol error rate or ratio (SER) exceeds an SER threshold. In response to detection of such a condition, the link is disconnected or temporarily paused. The value for the SER threshold is determined using a statistical analysis of various link parameters to meet desired performance levels, such as a mean time to false packet acceptance (MTTFPA) of >approximately 15 billion years while providing a mean time to disconnect of >100 years.
Abstract:
Methods and test equipment for measuring jitter in a Pulse Amplitude Modulated (PAM) transmitter. Under one procedure, a first two-level PAM signal test pattern is used to measure clock-related jitter separated into random and deterministic components, while a second two-level PAM signal test pattern is used to measure oven-odd jitter (EOJ). Under another procedure, A four-level PAM signal test pattern is used to measure jitter-induced noise using distortion analysis. Test equipment are also disclosed for implementing various aspects of the test methods.
Abstract:
Methods, apparatus and systems for measuring signal transition times for a four-level pulse modulated amplitude (PAM4) transmitter. During a test procedure, a PAM4 transmitter is configured to repetitively transmit a PAM4 symbol test pattern, which is captured as a signal waveform. The test pattern includes at least one rising signal sequence having a PAM4 symbol pattern of at least three −1 PAM4 symbols followed by at least three +1 PAM4 symbols and at least one falling signal sequence having a PAM4 symbol pattern of at least three +1 PAM4 symbols followed by at least three −1 PAM4 symbols. A voltage modulation amplitude (VMA) level for each of a −1 and +1 PAM4 signal level is measured for at least one rising signal sequence and falling signal sequence to derive 20% and 80% VMA levels. A rise transition time is then determined by measuring the time interval between when a rising signal crosses the 20% and 80% VMA levels, and a fall transition time is determined by measuring the time interval between when a falling signal crosses the 80% and 20% VMA levels.