Abstract:
A method of transmitting controller motion from a robotic manipulator to a surgical instrument includes rotating a plate included in the robotic manipulator. The plate has a driving surface that bears against an inner gimbal of a gimbal assembly included in the surgical instrument. The plate is rotated about a center of motion that coincides with an intersection of two rotational axes of the gimbal assembly.
Abstract:
A method of transmitting controller motion from a robotic manipulator to a surgical instrument includes rotating a plate included in the robotic manipulator. The plate has a driving surface that bears against an inner gimbal of a gimbal assembly included in the surgical instrument. The plate is rotated about a center of motion that coincides with an intersection of two rotational axes of the gimbal assembly.
Abstract:
A force transmission includes a gimbal plate having two degrees of freedom. Each of three lever arms is supported by a pivot between two ends of the lever arm. One end of each lever arm is coupled to the gimbal plate such that the three couplings are not collinear. An equalizer cable has two opposing ends, each end fixedly coupled to one of the lever arms. The equalizer cable is routed over a lever arm pulley pivotally coupled to another of the lever arms between the pivot and one end of the lever arm. The gimbal plate may be coupled to the three lever arms by flexible cables or by links that transmit compression forces but not tension forces. The cables may be substantially contained within a tube. The links may be electrically non-conductive. The force transmission may control a surgical end effector in a teleoperated surgical instrument.
Abstract:
A coupler to transfer controller motion from a robotic manipulator to a surgical instrument includes a pin having a tip with a bearing surface and a plate having a driving surface that bears against a gimbal assembly in the surgical instrument. The plate has a surface supported on the bearing surface of the pin. The bearing surface has a center that coincides with an intersection of two rotational axes of the gimbal assembly. The plate is rotated about the center of the bearing surface to transfer controller motion to the surgical instrument. There may be alignment features on the driving surface of the plate to mate with corresponding features on an inner gimbal of the gimbal assembly. An actuator arm may be connected to one side of the plate. An actuator mechanism may be connected to the actuator arm to rotate the plate about the center of the bearing surface.
Abstract:
A force transmission transmits a force to a primary output gimbal plate and a secondary output gimbal plate. The secondary output gimbal plate supports the primary output gimbal plate. Each of three primary levers is supported by a primary pivot. Each primary lever is coupled to the primary output gimbal plate such that the three couplings are not collinear. Each of three secondary levers is supported by a secondary pivot. Each secondary lever is coupled to one of the primary levers by a force applying connector. Each secondary lever is coupled to the secondary output gimbal plate such that the three couplings are not collinear. The output gimbal plates may be coupled to the levers by flexible cables. The cables may be substantially contained within a tube. The output gimbal plates may be substantially smaller than the input gimbal plate.
Abstract:
A coupler to transfer controller motion from a robotic manipulator to a surgical instrument includes a pin having a tip with a bearing surface and a plate having a driving surface that bears against a gimbal assembly in the surgical instrument. The plate has a surface supported on the bearing surface of the pin. The bearing surface has a center that coincides with an intersection of two rotational axes of the gimbal assembly. The plate is rotated about the center of the bearing surface to transfer controller motion to the surgical instrument. There may be alignment features on the driving surface of the plate to mate with corresponding features on an inner gimbal of the gimbal assembly. An actuator arm may be connected to one side of the plate. An actuator mechanism may be connected to the actuator arm to rotate the plate about the center of the bearing surface.
Abstract:
A force transmission transmits a force to a primary output gimbal plate and a secondary output gimbal plate. The secondary output gimbal plate supports the primary output gimbal plate. Each of three primary levers is supported by a primary pivot. Each primary lever is coupled to the primary output gimbal plate such that the three couplings are not collinear. Each of three secondary levers is supported by a secondary pivot. Each secondary lever is coupled to one of the primary levers by a force applying connector. Each secondary lever is coupled to the secondary output gimbal plate such that the three couplings are not collinear. The output gimbal plates may be coupled to the levers by flexible cables. The cables may be substantially contained within a tube. The output gimbal plates may be substantially smaller than the input gimbal plate.
Abstract:
A force transmission includes a gimbal plate having two degrees of freedom. Each of three lever arms is supported by a pivot between two ends of the lever arm. One end of each lever arm is coupled to the gimbal plate such that the three couplings are not collinear. An equalizer cable has two opposing ends, each end fixedly coupled to one of the lever arms. The equalizer cable is routed over a lever arm pulley pivotally coupled to another of the lever arms between the pivot and one end of the lever arm. The gimbal plate may be coupled to the three lever arms by flexible cables or by links that transmit compression forces but not tension forces. The cables may be substantially contained within a tube. The links may be electrically non-conductive. The force transmission may control a surgical end effector in a teleoperated surgical instrument.