Abstract:
According to an aspect, a display apparatus includes: a first light-transmissive substrate; a second light-transmissive substrate arranged to face the first light-transmissive substrate; a liquid crystal layer including polymer dispersed liquid crystals sealed between the first light-transmissive substrate and the second light-transmissive substrate; at least one light-emitting device arranged to face at least one of a side surface of the first light-transmissive substrate or a side surface of the second light-transmissive substrate; and at least one reflector arranged on at least one of a side surface of the first light-transmissive substrate or a side surface of the second light-transmissive substrate, the side surface of the first or second light-transmissive substrate being on an opposite side of the side surface of the first or second light-transmissive substrate to which the at least one light-emitting device faces, and configured to reflect light at the side surface on the opposite side.
Abstract:
A display device according to one aspect of the present invention includes a first substrate including a pixel portion and a terminal portion, a second substrate arranged to face the pixel portion, a first light source device arranged in the terminal portion, and irradiating a first end surface of the second substrate with first light, a liquid crystal layer arranged between the first substrate and the second substrate, and a semiconductor element arranged on a side opposite to a side of the pixel portion across the first light source device, and electrically coupled with the terminal portion, wherein the first light is propagated while reflected between the first substrate and the second substrate, and the liquid crystal layer modulates the propagated first light.
Abstract:
A display device includes: an array substrate including a plurality of first light-transmitting electrodes each disposed in a corresponding one of pixels; a counter substrate including positions overlapping the first light-transmitting electrodes and provided with a second light-transmitting electrode; a liquid crystal layer including polymer-dispersed liquid crystals filled between the array substrate and the counter substrate; and at least one light source configured to emit light toward a side surface of the counter substrate. The array substrate includes, in each of the pixels, a third light-transmitting electrode that at least partially overlaps the first light-transmitting electrode in the plan view with an insulating layer interposed therebetween. An area of the third light-transmitting electrode in the pixel in a display region closer to the light source is larger than an area of the third light-transmitting electrode in the pixel in a display region farther from the light source.
Abstract:
According to an aspect, a display apparatus includes: a first light-transmissive substrate; a second light-transmissive substrate arranged to face the first light-transmissive substrate; a liquid crystal layer including polymer dispersed liquid crystals sealed between the first light-transmissive substrate and the second light-transmissive substrate; at least one light-emitting device arranged to face at least one of a side surface of the first light-transmissive substrate or a side surface of the second light-transmissive substrate; and at least one reflector arranged on at least one of a side surface of the first light-transmissive substrate or a side surface of the second light-transmissive substrate, the side surface of the first or second light-transmissive substrate being on an opposite side of the side surface of the first or second light-transmissive substrate to which the at least one light-emitting device faces, and configured to reflect light at the side surface on the opposite side.
Abstract:
A display device according to an aspect includes: an array substrate including a plurality of first light-transmitting electrodes each disposed in a corresponding one of pixels; a counter substrate including positions that overlap the first light-transmitting electrodes in a plan view and are provided with a second light-transmitting electrode; a liquid crystal layer including polymer-dispersed liquid crystals filled between the array substrate and the counter substrate; and at least one light emitter configured to emit light toward a side surface of the counter substrate. The array substrate includes, in each of the pixels, a third light-transmitting electrode and a conductive metal layer. The third light-transmitting electrode at least partially overlaps the first light-transmitting electrode in the plan view with an inorganic insulating layer interposed therebetween, and the conductive metal layer is stacked on the third light-transmitting electrode.
Abstract:
A display device according to one aspect of the present invention includes a first substrate including at least a pixel electrode and a pixel switching circuit portion, a second substrate arranged to face the first substrate, a liquid crystal layer arranged between the first substrate and the second substrate, and configured to modulate light, the light being propagated while reflected between the first substrate and the second substrate, and a reflecting layer arranged over a liquid crystal layer side of the pixel switching circuit portion, partially superimposed with the pixel switching circuit portion, and electrically coupled with the pixel electrode, the reflecting layer having higher reflectance of the light than any members included in the pixel switching circuit portion.
Abstract:
According to an aspect, a display device includes: a cover member curved when viewed in a first axis direction along a first axis; and a display panel disposed on one side of the cover member. The cover member has a first surface facing the display panel and a second surface on the opposite side of the first surface. The first surface forms a straight line and at least a part of the second surface forms a curved line in a cross-section orthogonal to a second axis that is along a straight line extending from one end to the other end of the cover member when viewed in the first axis direction.
Abstract:
A display device according to one aspect of the present invention includes a first substrate including a pixel portion and a terminal portion, a second substrate arranged to face the pixel portion, a first light source device arranged in the terminal portion, and irradiating a first end surface of the second substrate with first light, a liquid crystal layer arranged between the first substrate and the second substrate, and a semiconductor element arranged on a side opposite to a side of the pixel portion across the first light source device, and electrically coupled with the terminal portion, wherein the first light is propagated while reflected between the first substrate and the second substrate, and the liquid crystal layer modulates the propagated first light.
Abstract:
A display device according to one aspect of the present invention includes a first substrate including a thin film transistor, a second substrate including a common electrode, an organic insulating layer arranged on the first substrate so as to overlap with the thin film transistor, and projecting from the first substrate toward the second substrate, and a conductive light shielding layer covering an upper surface and a side surface of the organic insulating layer, and electrically coupled with the common electrode, wherein the organic insulating layer and the light shielding layer hold a gap between the first substrate and the second substrate.
Abstract:
A circuit substrate includes, on an insulating substrate, a plurality of devices, a plurality of conductive layers connected in one-to-one correspondence with the devices, and an insulating layer provided between the devices and the conductive layers. The insulating layer includes a first insulating layer covering the devices, a second insulating layer formed on the first insulating layer, and a plurality of contact holes each passing through the first and second insulating layers in a thickness direction thereof. Side surfaces of the first and second insulating layers contact each other in at least part of the inside of each contact hole. Each conductive layer extends along an upper surface of the second insulating layer, at least a part of a side surface of the contact hole in which the side surfaces of the first and second insulating layers contact each other, and a bottom surface of the contact hole.