Abstract:
According to one embodiment, a liquid crystal display device including: a first substrate; a second substrate that is disposed so as to be opposed to the first substrate; a first wiring provided on the first substrate along a first direction; a second wiring provided along a second direction intersecting with the first direction; a thin-film transistor provided at an intersection between the first wiring and the second wiring; an organic insulating film formed on the thin-film transistor; a first opening that penetrates the organic insulating film; an island-shaped electrode that covers at least a part of an edge portion of a side surface portion and a bottom portion of the first opening; an inorganic insulating film that covers a common electrode and the island-shaped electrode; a second opening that penetrates the inorganic insulating film; and a pixel electrode formed on the inorganic insulating film and electrically connected to the island-shaped electrode through the second opening, wherein a bottom portion of the second opening is located at a position shifted from a bottom portion of the first opening in the direction of the second wiring.
Abstract:
A transverse electric field type liquid crystal display panel includes a pair of substrates opposed with a liquid crystal layer interposed therebetween. A plurality of sub-pixels having at least one curved portion in a display area are provided in a matrix on one side of the pair of substrates, and a pair of electrodes having at least one curved portion are formed in the plurality of sub-pixels. A light shield layer shielding a non-display area positioned on an outer peripheral side of the display area and between the plurality of sub-pixels is formed on the other side of the pair of substrates. The light shield layer of the non-display area is formed in a shape in which the outermost peripheral side of the display area is rectangular.
Abstract:
A transverse electric field type liquid crystal display panel includes a pair of substrates opposed with a liquid crystal layer interposed therebetween. A plurality of sub-pixels having at least one curved portion in a display area are provided in a matrix on one side of the pair of substrates, and a pair of electrodes having at least one curved portion are formed in the plurality of sub-pixels. A light shield layer shielding a non-display area positioned on an outer peripheral side of the display area and between the plurality of sub-pixels is formed on the other side of the pair of substrates. The light shield layer of the non-display area is formed in a shape in which the outermost peripheral side of the display area is rectangular.
Abstract:
A transverse electric field type liquid crystal display panel includes a pair of substrates opposed with a liquid crystal layer interposed therebetween. A plurality of sub-pixels having at least one curved portion in a display area are provided in a matrix on one side of the pair of substrates, and a pair of electrodes having at least one curved portion are formed in the plurality of sub-pixels. A light shield layer shielding a non-display area positioned on an outer peripheral side of the display area and between the plurality of sub-pixels is formed on the other side of the pair of substrates. The light shield layer of the non-display area is formed in a shape in which the outermost peripheral side of the display area is rectangular.
Abstract:
A transverse electric field type liquid crystal display panel includes a pair of substrates opposed with a liquid crystal layer interposed therebetween. A plurality of sub-pixels having at least one curved portion in a display area are provided in a matrix on one side of the pair of substrates, and a pair of electrodes having at least one curved portion are formed in the plurality of sub-pixels. A light shield layer shielding a non-display area positioned on an outer peripheral side of the display area and between the plurality of sub-pixels is formed on the other side of the pair of substrates. The light shield layer of the non-display area is formed in a shape in which the outermost peripheral side of the display area is rectangular.
Abstract:
A transverse electric field type liquid crystal display panel includes a pair of substrates opposed with a liquid crystal layer interposed therebetween. A plurality of sub-pixels having at least one curved portion in a display area are provided in a matrix on one side of the pair of substrates, and a pair of electrodes having at least one curved portion are formed in the plurality of sub-pixels. A light shield layer shielding a non-display area positioned on an outer peripheral side of the display area and between the plurality of sub-pixels is formed on the other side of the pair of substrates. The light shield layer of the non-display area is formed in a shape in which the outermost peripheral side of the display area is rectangular.
Abstract:
A liquid crystal display device is provided and includes first and second substrates; first wiring provided on first substrate along first direction; second wiring provided along second direction intersecting with first direction; thin-film transistor provided at intersection between first and second wirings; drain electrode electrically connected to thin-film transistor; organic insulating film formed on thin-film transistor and covering part of drain electrode; first opening that penetrates organic insulating film and exposing drain electrode; island-shaped electrode disposed on first opening and organic insulating film, and electrically connected to drain electrode; inorganic insulating film disposed on organic insulating film, the drain electrode, and the island-shaped electrode inside the first opening; a second opening that penetrates the inorganic insulating film and exposing the drain electrode; and a pixel electrode formed on the inorganic insulating film and electrically connected to the island-shaped electrode through the second opening.
Abstract:
In a liquid crystal display device, an upper electrode and a drain electrode are reliably connected to each other electrically, with preventing or suppressing an occurrence of an aperture ratio loss, or sufficiently reducing a parasitic capacitance between the scanning line and the lower electrode. An interlayer resin film is formed on a drain electrode, with a hole being formed on the interlayer resin film, and on the drain electrode exposed to a bottom portion of the hole, an island-shaped electrode is formed separately from a lower electrode. Moreover, on the island-shaped electrode, an inter-electrode insulating film is formed, a contact hole is formed in the inter-electrode insulating film, and an upper electrode is formed on the island-shaped electrode exposed to a bottom portion of the contact hole.
Abstract:
In a liquid crystal display device, an upper electrode and a drain electrode are reliably connected to each other electrically, with preventing or suppressing an occurrence of an aperture ratio loss, or sufficiently reducing a parasitic capacitance between the scanning line and the lower electrode. An interlayer resin film is formed on a drain electrode, with a hole being formed on the interlayer resin film, and on the drain electrode exposed to a bottom portion of the hole, an island-shaped electrode is formed separately from a lower electrode. Moreover, on the island-shaped electrode, an inter-electrode insulating film is formed, a contact hole is formed in the inter-electrode insulating film, and an upper electrode is formed on the island-shaped electrode exposed to a bottom portion of the contact hole.
Abstract:
In a liquid crystal display device, an upper electrode and a drain electrode are reliably connected to each other electrically, with preventing or suppressing an occurrence of an aperture ratio loss, or sufficiently reducing a parasitic capacitance between the scanning line and the lower electrode. An interlayer resin film is formed on a drain electrode, with a hole being formed on the interlayer resin film, and on the drain electrode exposed to a bottom portion of the hole, an island-shaped electrode is formed separately from a lower electrode. Moreover, on the island-shaped electrode, an inter-electrode insulating film is formed, a contact hole is formed in the inter-electrode insulating film, and an upper electrode is formed on the island-shaped electrode exposed to a bottom portion of the contact hole.