摘要:
In order to further develop a circuit arrangement (100) for electronic data communication, comprising—at least a non-volatile memory module (10) for storing data, and—at least an interface logic (20) associated with the memory module (10)—for addressing the memory module (10) and—for writing data to the memory module (10) or—for reading data from the memory module (10), together with a related method for registering light attacks on the non-volatile memory module (10), in such a way that, firstly, the light attack is recognized immediately and reliably regardless of whether an access, in particular a read access, to the memory module (10) is taking place or not and, secondly, the entire address space of the memory module (10) is covered as uniformly as possible in this regard, it is proposed that at least a monitoring arrangement (22) provided for monitoring the memory module (10) is associated with the interface logic (20), by means of which monitoring arrangement (22) an irradiation of the memory module (10) with at least a light source [so-called “light attack”] can be detected and/or registered and/or signaled in a test mode (T) in which no write or read access to the memory module (10) takes place.
摘要:
In order to further develop an electronic memory component (100 or 100′), comprising at least one memory cell matrix (10) which is embedded in and/or let into at least one doped receiving substrate (20), in such a way that a light incidence taking the form of a so-called light attack is detected directly or sensed immediately without dead times (=contribution to chip development), it is proposed,—that the receiving substrate (20) be covered and/or surrounded at least partially and/or on at least one of its surfaces remote from the memory cell matrix (10) by at least one top/protective substrate (30) oppositely doped to the receiving substrate (20) and—that at least one of the substrates (20 or 30), for example the receiving substrate (20) and/or in particular the top/protective substrate (30), be in contact (12a or 12b) or connection (32) with at least one circuit arrangement (24 or 34 respectively) for the detection of voltages or currents caused by charge carriers generated upon light incidence.
摘要:
In order to further develop an electronic memory component (100 or 100′), comprising at least one memory cell matrix (10) which is embedded in and/or let into at least one doped receiving substrate (20), in such a way that a light incidence taking the form of a so-called light attack is detected directly or sensed immediately without dead times (=contribution to chip development), it is proposed,—that the receiving substrate (20) be covered and/or surrounded at least partially and/or on at least one of its surfaces remote from the memory cell matrix (10) by at least one top/protective substrate (30) oppositely doped to the receiving substrate (20) and—that at least one of the substrates (20 or 30), for example the receiving substrate (20) and/or in particular the top/protective substrate (30), be in contact (12a or 12b) or connection (32) with at least one circuit arrangement (24 or 34 respectively) for the detection of voltages or currents caused by charge carriers generated upon light incidence.
摘要:
The invention relates to a sensor, in particular for detecting attacks on at least one signal-carrying line (11), in particular of chip cards (1), said sensor having a circuit arrangement (10) which comprises a first circuit arrangement (13) for detecting an instantaneous voltage value above a first supply voltage and a second circuit arrangement (14) for detecting an instantaneous voltage value below a second supply voltage, wherein, when a voltage value outside the range between the first and second supply voltages is detected, a signal (19) is generated and can be taken as a basis for initiating a protective measure.
摘要:
The invention relates to a semiconductor device having a byte-erasable EEPROM memory comprising a matrix of rows and columns of memory cells. In order to provide a semiconductor device having a byte-erasable EEPROM which has a reduced chip size and increased density and which is suitable for low-power applications it is proposed according to the present invention that the memory cells each comprise a selection transistor having a selection gate and, arranged in series therewith, a memory transistor having a floating gate and a control gate, the selection transistor being further connected to a source line of the byte-erasable EEPROM memory, which source line is common for a plurality of memory cells, and the memory transistor being further connected to a bit line of the byte-erasable EEPROM memory, wherein the columns of memory cells are located in separate p-type wells separated by n-type wells. Preferably, high voltage switching elements are provided for dividing global control gates into local control gates for each column of bytes.