Abstract:
A multi-purpose hitch tool includes a removal device that is coupled with a first end of an elongated handle. The removal device is configured to remove a cotter pin from a hitch pin or to strike the hitch pin out of engagement with a hitch receiver. A brush assembly is coupled with a second end of the elongated handle and is configured to remove debris from an interior cavity of the hitch receiver. The brush assembly includes a first bristle array that is configured to scrape the debris from the interior cavity. A second bristle array is disposed over an opposite lateral side of the elongated handle from the first bristle array. The second bristle array is less rigid than the first bristle array and is configured to bend against an interior surface within the interior cavity to bias the first bristle array against an opposite interior surface.
Abstract:
A multi-channel model train sound reproduction system, in which digital sound files are assigned to a particular channel. The channel assignment may be fixed or variable depending on operation state. For the variable embodiments, channel assignment is preferably done in real time according to the configuration that will produce the highest quality sound reproduction.
Abstract:
A multi-purpose hitch tool includes a removal device that is coupled with a first end of an elongated handle. The removal device is configured to remove a cotter pin from a hitch pin or to strike the hitch pin out of engagement with a hitch receiver. A brush assembly is coupled with a second end of the elongated handle and is configured to remove debris from an interior cavity of the hitch receiver. The brush assembly includes a first bristle array that is configured to scrape the debris from the interior cavity. A second bristle array is disposed over an opposite lateral side of the elongated handle from the first bristle array. The second bristle array is less rigid than the first bristle array and is configured to bend against an interior surface within the interior cavity to bias the first bristle array against an opposite interior surface.
Abstract:
The invention provides in one aspect methods and apparatus for use with C-arm and other CT systems, e.g., with non-rigid geometries. In such systems, by way of example, calibration can be performed to determine the exact position of the x-ray source and the exact orientation of the detector where each projection measurement is made. Next, a weighting coefficient can be determined for the voxels in each plane of a reconstruction volume at every possible projection. Finally, the order in which to process the voxels during image reconstruction can be determined. Following an actual CT scan procedure in which scans are obtained of a volume to be constructed, a system according to these and related aspects of the invention can use an optimal, pre-calculated processing method, while utilizing offsets and weighting coefficients determined during calibration, for performing backprojection image reconstruction.
Abstract:
The invention provides in one aspect methods and apparatus for use with C-arm and other CT systems, e.g., with non-rigid geometries. In such systems, by way of example, calibration can be performed to determine the exact position of the x-ray source and the exact orientation of the detector where each projection measurement is made. Next, a weighting coefficient can be determined for the voxels in each plane of a reconstruction volume at every possible projection. Finally, the order in which to process the voxels during image reconstruction can be determined. Following an actual CT scan procedure in which scans are obtained of a volume to be constructed, a system according to these and related aspects of the invention can use an optimal, pre-calculated processing method, while utilizing offsets and weighting coefficients determined during calibration, for performing backprojection image reconstruction.
Abstract:
The invention provides in one aspect methods and apparatus for use with C-arm and other CT systems, e.g., with non-rigid geometries. In such systems, by way of example, calibration can be performed to determine the exact position of the x-ray source and the exact orientation of the detector where each projection measurement is made. Next, a weighting coefficient can be determined for the voxels in each plane of a reconstruction volume at every possible projection. Finally, the order in which to process the voxels during image reconstruction can be determined. Following an actual CT scan procedure in which scans are obtained of a volume to be constructed, a system according to these and related aspects of the invention can use an optimal, pre-calculated processing method, while utilizing offsets and weighting coefficients determined during calibration, for performing backprojection image reconstruction.
Abstract:
The invention provides improvements in reconstructive imaging of the type in which a volume is reconstructed from a series of measured projection images (or other two-dimensional representations) generated by projection of a point x-ray source (or other radiation source), positioned at a distinct focus, through the volume to a plane at which the respective projection image is acquired (“detector plane”). In one aspect, the improvements are with respect to back-projecting a two-dimensional representation lying in the detector plane (representing, for example, a difference between an originally-acquired measured projection image and a subsequently-generated estimate thereof) to generate three-dimensional representation (which can be used, for example, to update an estimate of the volume). According to this aspect, for each of one or more slices of the 3D representation parallel to the projection plane and for each distinct focus at which a projection is generated, the following steps are performed in connection with the back-projection: (i) warping the first 2D representation to generate a second 2D representation by applying to the first 2D representation a selected linear mapping, where that selected linear mapping would map, in order to match dimensions of the respective slice within the 3D representation, a region defined by projection, at the respective focus, of corners of that slice onto the detector plane, and (ii) incrementing values of each of one or more voxels of the respective slice by an amount that is a function of a value of a correspondingly indexed pixel of the second 2D representation. A related aspect provides improvements with respect to forward-projecting, as well as in iterative (and non-iterative) methodologies that incorporate both back-projection and forward-projection.
Abstract:
The invention provides improvements in reconstructive imaging of the type in which a volume is reconstructed from a series of measured projection images (or other two-dimensional representations) generated by projection of a point x-ray source (or other radiation source), positioned at a distinct focus, through the volume to a plane at which the respective projection image is acquired (“detector plane”). In one aspect, the improvements are with respect to back-projecting a two-dimensional representation lying in the detector plane (representing, for example, a difference between an originally-acquired measured projection image and a subsequently-generated estimate thereof) to generate three-dimensional representation (which can be used, for example, to update an estimate of the volume). According to this aspect, for each of one or more slices of the 3D representation parallel to the projection plane and for each distinct focus at which a projection is generated, the following steps are performed in connection with the back-projection: (i) warping the first 2D representation to generate a second 2D representation by applying to the first 2D representation a selected linear mapping, where that selected linear mapping would map, in order to match dimensions of the respective slice within the 3D representation, a region defined by projection, at the respective focus, of comers of that slice onto the detector plane, and (ii) incrementing values of each of one or more voxels of the respective slice by an amount that is a function of a value of a correspondingly indexed pixel of the second 2D representation. A related aspect provides improvements with respect to forward-projecting, as well as in iterative (and non-iterative) methodologies that incorporate both back-projection and forward-projection.