Abstract:
An ultrasonic diagnostic apparatus, including a transceiver for sequentially generating multiple received signals, a color flow mapping signal processing unit that generates blood flow velocity data based on the multiple received signals, and a residual image processing unit that includes an aliasing determination unit and a persistence calculation unit and performs residual image processing on blood flow velocity data, an aliasing determination unit that adds the blood flow velocity data Vcurrent for the most recent frame and the blood flow velocity data Vout-1 for the frame preceding the most recent frame, performs aliasing determination on the frame that was determined by a frame before the most recent frame based on the aliasing determination results of the blood flow velocity data, and a persistence calculation unit that performs a persistence calculation after performing a correction to the blood flow velocity data in which aliasing has occurred.
Abstract:
An ultrasound diagnostic apparatus configured in a manner connectable to an ultrasound probe and an indicator includes: a transmission unit; a reception unit; a B mode image generation unit; a C mode image generation unit; and a display processing unit, wherein the C mode image generation unit compares the first C mode image data and second C mode image data generated before the first C mode image data, determines whether there is a noise part in the first C mode image data based on the comparison result, eliminates the noise part when there is the noise part in the first C mode image data, and generates a first C mode image based on the first C mode image data from which the noise part is eliminated.
Abstract:
An ultrasound diagnostic apparatus includes: a hardware processor that search for a blood vessel position of a subject in a tomographic image and automatically setting a region corresponding to the blood vessel position detected in the tomographic image as a measurement region for generating a Doppler image. In a case where a measurement region has been already set or in a case where a specified position specified by a user exists when the hardware processor automatically sets the measurement region, the hardware processor executes processing of searching for the blood vessel position such that the measurement region is automatically set near the measurement region that has been already set or the specified position.
Abstract:
An ultrasound diagnostic apparatus transmits ultrasound toward a subject by driving an ultrasound probe in which multiple transducers are arranged in an array, receives a reception signal that is based on waves reflected within the subject from the ultrasound probe, and generates an ultrasound image. The ultrasound diagnostic apparatus includes: a scan control section that sets scan conditions so that trapezoidal scanning is performed by the ultrasound probe; and a transmission section that controls driving of the ultrasound probe based on the scan conditions. The scan control section sets the scan conditions so that the inter-acoustic line angles in or around the center of the ultrasound probe are smaller than the inter-acoustic line angles near the edges when viewed along the scan direction.
Abstract:
First transmission information in which an optimum transmitting voltage and a transmitting waveform are associated with each other for each display mode, and second transmission information in which a plurality of transmitting voltage candidates and pulse-width modulation transmitting waveforms that are pulse-width-modulation controlled to respectively correspond to the plurality of transmitting voltage candidates are associated with each other for each display mode are used to extract a maximum transmitting voltage candidate that does not exceed an optimum transmitting voltage of a first display mode from a plurality of transmitting voltage candidates included in the second transmission information of a second display mode so as to determine a common transmitting voltage used in common for the first display mode and the second display mode based on the optimum transmitting voltage of the first display mode and/or the maximum transmitting voltage candidate.
Abstract:
An ultrasound diagnostic device generating a frame reception signal by compounding sub-frame reception signals through spatial compounding, the ultrasound diagnostic device including a control circuit that includes a sub-frame enhancement map creator creating a plurality of sub-frame enhancement maps, each corresponding to one sub-frame reception signal, the creating of each of the sub-frame enhancement maps being performed by calculating, for a pixel region reception signal in a corresponding sub-frame reception signal, an enhancement amount in accordance with a characteristic value calculated based on the pixel region reception signal, the pixel region reception signal corresponding to a pixel region composed of one or more pixels, and an enhancement-applied reception signal generator generating an enhancement-applied frame reception signal by compounding pixel region reception signals included in the sub-frame reception signals based on pixel region positions, taking into account the enhancement amount in at least one of the sub-frame enhancement maps.
Abstract:
An ultrasound diagnostic apparatus includes an ultrasound probe including a plurality of transducers arranged in a plurality columns and a switching element which switches input of a driving signal to the transducers and output of a receiving signal, a transmitter which outputs the driving signal to the transducers, a receiver which acquires the receiving signal corresponding to the transducers, and a hardware processor which generates ultrasound image data corresponding to each of the columns from the receiving signal, makes partial images in the ultrasound image data respectively have representations, synthesizes the ultrasound image data respectively including the partial images to generate composite image data, generates first identification information indicating to which position in a depth direction of the composite image data each of the representations of the partial images in the composite image data corresponds, and displays the generated first identification information and composite image data on a display.
Abstract:
Techniques for efficiently generating time-varying image data for use in training a machine learning model are disclosed. An aspect of the present disclosure relates to a machine learning model trained using training data that includes at least one piece of training time-varying image data of second time-varying image data and third time-varying image data, the second time-varying image data being obtained by standardizing first time-varying image data in a time direction, the first time-varying image data being based on a reception signal for image generation received by an ultrasound probe, third time-varying image data being based on the second time-varying image data, and, and ground truth data including a detection target corresponding to the at least one piece of training time-varying image data.
Abstract:
Provided is an ultrasound diagnostic apparatus for generating a tomographic image of a subject by transmitting and receiving an ultrasound, the ultrasound diagnostic apparatus including: a hardware processor that: detects a blood vessel imaged in the tomographic image; determines whether an image of the blood vessel which has been detected falls under either a short axis view or a long axis view by an image analysis of the tomographic image; and sets a steering angle of an ultrasound beam used in measuring conditions of the detected blood vessel or a blood flow velocity in the detected blood vessel, based on a determination result of the image of the blood vessel.
Abstract:
An ultrasonic diagnostic apparatus includes an ultrasonic image generator that generates ultrasonic image data of a moving image based on a reception signal received from an ultrasonic probe. The ultrasonic probe transmits and receives an ultrasonic wave to and from a subject. The ultrasonic diagnostic apparatus further includes a camera image generator that takes an image of an imaging target and generates camera image data of a moving image. The ultrasonic diagnostic apparatus further includes a hardware processor that performs, in response to operation input related to ultrasonic diagnosis, processing related to the camera image data.