Adjusting of radiofrequency array using a camera system

    公开(公告)号:US11519982B2

    公开(公告)日:2022-12-06

    申请号:US17312967

    申请日:2019-12-09

    摘要: A radio frequency (RF) system comprises an RF-array of antenna elements, a regulating arrangement to tune the antenna elements' impedances and a camera system to acquire image information of the RF-array. An analysis module is provided to derive operational settings such as resonant tuning settings, decoupling and impedance matchings of the antenna elements' impedances from the image information. The image information also represents the actual impedances and resonant properties of the RF-array. From the image information appropriate impedance settings can be derived that are the tuning parameters to render the RF-array resonant.

    Receive coils with low-loss detune circuits for magnetic resonance (MR) systems and method of operation thereof

    公开(公告)号:US10247793B2

    公开(公告)日:2019-04-02

    申请号:US15129429

    申请日:2015-03-18

    摘要: A radio-frequency (RF) coil assembly (120, 660) for acquiring magnetic resonance (MR) signals. The RF coil assembly may include one or more of: at least one radio-frequency (RF) receive coil (246-x) for acquiring the MR signals; a detune circuit (248-x) including one or more circuit arms (A, B) serially coupled to the at least one RF receive coil, each of one or more circuit arms having at least two low-loss switches (350, 352, 450, 452, 462, 466) serially coupled to each other; a charge control circuit (372, 472) coupled to each of the one or more circuit arms at a location that is between the at least two serially-coupled low-loss switches of each of the one of more circuit arms and configured to draw power from the RF receive coil during a detune state; and an energy storage device (252, 370, 470) coupled to the charge control circuit and configured to store the drawn power.

    Chaos coding based communications for MRI coils

    公开(公告)号:US11438135B2

    公开(公告)日:2022-09-06

    申请号:US16474257

    申请日:2018-01-15

    摘要: A method for communicating magnetic resonance imaging (MRI) information wirelessly includes detecting an MRI system emission sequence, and identifying at least one parameter of the sequence. The at least one parameter identified is cross-correlated. A first initial condition for a first chaotic coded sequence and a second initial condition for a second chaotic coded sequence are determined based on the at least one parameter. The method further includes obtaining, from a modulation symbol mapped to MRI information generated at a local coil responsive to the sequence, a real component of the symbol and an imaginary component of the symbol. The real component of the symbol is encrypted based on the first initial condition, and the imaginary component of the symbol is encrypted based on the second initial condition. The encrypted real component and imaginary component of the symbol are wirelessly transmitted.

    High data rate and real time operating system wireless coupling for medical imaging systems and method of operation thereof

    公开(公告)号:US10928470B2

    公开(公告)日:2021-02-23

    申请号:US15775047

    申请日:2016-11-18

    IPC分类号: G01R33/36 G01R33/54

    摘要: An image acquisition system (100, 500, 600, 700). The image acquisition system may include at least one processor (110, 502-2, 610, 710) configured to control: a transmitter (112, 612) to form packets for transmission over a high-data-rate (HDR) wireless communication link (HDR-WCL) (124, 624), an image acquisition device (120, 631) to acquire image data and form HDR data, and a scheduler (114, 614) to acquire control information for controlling at least one function of the image acquisition system during the image acquisition, determine a restricted packet size for the packets of the HDR-WCL in accordance with at least deterministic timing requirements of the system, and determine a schedule for transmitting the control information in a corresponding packet of the packets in accordance with the deterministic timing requirements of the image acquisition system and the restricted packet size.

    Adjustable RF coil assembly for magnetic resonance systems and method of operation thereof

    公开(公告)号:US10539635B2

    公开(公告)日:2020-01-21

    申请号:US15767837

    申请日:2016-10-11

    摘要: A radio-frequency (RF) coil apparatus for magnetic resonance (MR) systems (100, 200, 300, 400, 500, 600, 700, 900, 1000) includes a base (102, 502, 702, 902, 1002) having opposed sides (121), a surface (124) to support an object of interest (OOI) for scanning, and fasteners (127) situated at the opposed sides, A positioner (104, 304A, 304B, 504, 604, 704, 1004) is configured to be releasably attached to the base and has a body (130) extending between opposed ends and fasteners (134,) situated at the opposed ends of the body, The body is configured to form an arch between the opposed ends. An upper section (106, 606, 706, 906, 1006) has at least one RF coil array (142) for acquiring induced MR signals, and is configured to be positioned over the positioner.

    Magnetic resonance (MR) system with increased wireless channel throughput and method of operation thereof

    公开(公告)号:US10852374B2

    公开(公告)日:2020-12-01

    申请号:US15779868

    申请日:2016-11-28

    摘要: A magnetic resonance (MR) system, including at least one wireless radio-frequency (RF) coil comprising antennas for receiving induced MR signals and an antenna array comprising transmission and reception antennas; a base transmitter system (BTS) having an antenna array comprising a plurality of transmission and reception antennas configured to communicate with the RF coil using a selected spatial diversity (SD) method; and at least one controller to control the BTS and the RF coil to determine a number of transmission and/or reception antennas available, couple the transmission and reception antennas to form corresponding antenna pairings, and determine signal characteristic information (SCI) of the antenna pairings, select an SD transmission method based upon the determined number of antennas and the determined SCI for communication between the BTS and the RF coil, and establish a communication channel between the BTS and the RF coil in accordance with the selected SD transmission method.

    Silent 3D magnetic resonance fingerprinting

    公开(公告)号:US10816625B2

    公开(公告)日:2020-10-27

    申请号:US16095954

    申请日:2017-04-26

    摘要: The invention provides for a magnetic resonance imaging system (100) for acquiring magnetic resonance data (142) from a subject (118) within an imaging zone (108). The magnetic resonance imaging system comprises a memory (134, 136) for storing machine executable instructions (160), and pulse sequence commands (140, 400, 502, 600, 700), wherein the pulse sequence commands are configured to cause the magnetic imaging resonance system to acquire the magnetic resonance data according to a magnetic resonance fingerprinting technique. The pulse sequence commands are further configured to control the magnetic resonance imaging system to perform spatial encoding using a zero echo time magnetic resonance imaging protocol. Execution of the machine executable instructions causes the processor controlling the MRI system to: acquire (200) the magnetic resonance data by controlling the magnetic resonance imaging system with the pulse sequence commands; and calculate (202) a spatial distribution (146) of each of a set of predetermined substances by comparing the magnetic resonance data with a magnetic resonance fingerprinting dictionary (144).

    Wireless-type RF coil and transmitter for legacy magnetic resonance imaging (MRI) systems and method of operation thereof

    公开(公告)号:US10598744B2

    公开(公告)日:2020-03-24

    申请号:US15561536

    申请日:2016-03-14

    IPC分类号: G01R33/36

    摘要: A transmission apparatus for legacy magnetic resonance (MR) systems including one or more of a radio transmission portion having coupling to an analog RF cable port of the MR system including at least one first controller, an analog-to-digital converter (A/D), and a transmitter. The first controller controls the A/D to digitize analog magnetic resonance (MR) information received from the RF coil and controls the transmitter to transmit the digitized MR information. A radio reception portion including an analog output port and a coupler for coupling the output port to a legacy cable port input of the legacy system including at least one second controller, a receiver, and a digital-to-analog converter (D/A). The second controller controls the receiver to receive the transmitted digitized MR information, and controls the D/A to perform a digital-to-analog conversion to form a corresponding analog MR signal which is output at the output port.