Abstract:
Disclosed are a method of reducing artifacts by using structural similarity and a program thereof. The method includes obtaining a plurality of input CT images by a computer, generating an artifact map by comparing the plurality of input CT images with each other by the computer, generating a structural similarity map between each CT image and the metal artifact map by the computer, and generating, by the computer, a final reconstructed image by comparing specific points on a plurality of structural similarity maps with each other and applying data of an input CT image used to generate a structural similarity map having a lowest degree of structural similarity as data of a specific point.
Abstract:
Provided is single-walled carbon nanotube saturable absorber production via a multi-vacuum filtration method, and more particularly, single-walled carbon nanotube saturable absorber production via a multi-vacuum filtration method, capable of depositing a carbon nanotube thin film on a filter using a vacuum chamber and a membrane filter, etching the filter using an etchant so as to be transferred to an upper surface of the polymer, coating the polymer on the carbon nanotube to thereby produce a carbon nanotube saturable absorber, as a method of producing a carbon nanotube thin film to transfer the thin film to the polymer using a multi-filtration method in order to produce a passive saturable absorber to be used in laser oscillation.
Abstract:
Provided is a device of generating various types of pulses by controlling a distance between saturable absorber connectors, and more particularly, a device of generating various types of pulses by controlling a distance between saturable absorber connectors, capable of actively controlling a distance between saturable absorbers to completely overcome a disadvantage that an opened space is present in a cavity or a disadvantage that a fiber component should be changed and implementing a simple design of the entire fiber laser cavity since only a saturable absorber part, which is a portion of a fiber laser cavity, should be designed, as a carbon nanotube saturable absorber part in a passively mode-locked fiber laser generating apparatus using the saturable absorber.