Abstract:
Disclosed are a liquid crystal display device which reduces the number of masks and improves an aperture ratio, and a method for fabricating the same. The liquid crystal display device includes gate and data lines perpendicularly intersecting on a substrate having pixel and pad parts; a thin film transistor on the substrate at the intersection of the gate and data lines; a pixel electrode on the substrate at the pixel part and connected directly to a drain electrode of the thin film transistor; an insulating film on the overall surface of the substrate including the pixel electrode and the thin film transistor; an organic film on the insulating film over the thin film transistor and the data line; and a common electrode of slit shapes overlapping the pixel electrode such that the insulating film is interposed between the common electrode and the pixel electrode.
Abstract:
An array substrate for an FFS mode LCD device includes a gate line and a gate pad electrode on a substrate; a common line parallel to the gate line; a data line extending along a second direction in a display area and a data pad electrode disposing in a non-display area; a thin film transistor electrically connected to the gate and data lines; a first passivation layer covering the thin film transistor and the data line; a second passivation layer on the first passivation layer and having a first thickness in the display area and a second thickness in the non-display area; a common electrode on the second passivation layer and connected to the common line; a third passivation layer on the common electrode; and a pixel electrode, a gate auxiliary pad electrode and a data auxiliary pad electrode on the third passivation layer.
Abstract:
An array substrate for an FFS mode LCD device includes a gate line and a gate pad electrode on a substrate; a common line parallel to the gate line; a data line extending along a second direction in a display area and a data pad electrode disposing in a non-display area; a thin film transistor electrically connected to the gate and data lines; a first passivation layer covering the thin film transistor and the data line; a second passivation layer on the first passivation layer and having a first thickness in the display area and a second thickness in the non-display area; a common electrode on the second passivation layer and connected to the common line; a third passivation layer on the common electrode; and a pixel electrode, a gate auxiliary pad electrode and a data auxiliary pad electrode on the third passivation layer.
Abstract:
An organic light emitting display device includes a substrate having a sub-pixel area and a pad area, a light shielding layer in the sub-pixel area, a thin film transistor on the light shielding layer in the sub-pixel area, a light emitting diode connected to the thin film transistor, a lower pad electrode in the pad area, a first insulating layer covering the lower pad electrode to expose a portion of the lower pad electrode, an upper pad electrode connected to the lower pad electrode, and a second insulating layer between the first insulating layer and the upper pad electrode, the second insulating layer overlapping the upper pad electrode so that an end portion of the second insulating layer coincides with an end portion of the upper pad electrode.
Abstract:
Disclosed are a liquid crystal display device which reduces the number of masks and improves an aperture ratio, and a method for fabricating the same. The liquid crystal display device includes gate and data lines perpendicularly intersecting on a substrate having pixel and pad parts; a thin film transistor on the substrate at the intersection of the gate and data lines; a pixel electrode on the substrate at the pixel part and connected directly to a drain electrode of the thin film transistor; an insulating film on the overall surface of the substrate including the pixel electrode and the thin film transistor; an organic film on the insulating film over the thin film transistor and the data line; and a common electrode of slit shapes overlapping the pixel electrode such that the insulating film is interposed between the common electrode and the pixel electrode.