Abstract:
An organic light emitting display includes a display panel including display lines, on which a plurality of pixels each including an organic light emitting diode and a driving thin film transistor (TFT) are formed. The display lines are sequentially charged to an image display data voltage in response to an image display gate pulse in an image display period of one frame. A sensing target display line among the display lines outputs a sensing voltage corresponding to changes in electrical characteristic of the driving TFT included in each pixel in response to a sensing gate pulse during a vertical blank period excluding the image display period from the one frame and then is charged to a luminance recovery data voltage. The sensing gate pulse is supplied in the same pulse shape as the image display gate pulse in a predetermined period for charging the luminance recovery data voltage.
Abstract:
A voltage compensation type pixel circuit of an AMOLED display device includes a driving transistor serially connected to a light emitting element between high-potential and low-potential power lines to drive the light emitting element in response to a voltage supplied to a first node, a first program transistor for supplying a data voltage of a data line to a second node in response to a scan signal of a scan line, a second program transistor for supplying a reference voltage from a reference voltage supply line to the first node in response to the scan signal of the scan line, a merge transistor for connecting the first and second nodes in response to a merge signal of a merge line, a storage capacitor connected between a third node and the second node interposed between the driving transistor and the light emitting element to store a voltage which corresponds to the data voltage in which the threshold voltage is compensated, and first and second reset transistors for initializing at least two of the first, second, and third nodes to an initialization voltage of an initialization voltage line in response to a reset signal of a reset line.
Abstract:
A panel defect detection method and an organic light emitting display device. A region having a high probability of a panel defect is intensively sensed through panel defect detection based on sensing results of characteristic values according to subpixels on sensing subpixel lines in an amount equal to the number of sensing subpixel lines preset in specific regions rather than all regions of a display panel. Rates and accuracy in detection of panel defects can be improved.
Abstract:
There are provided a timing controller of operating selective sensing and an organic light emitting display device comprising the same, the timing controller being configured to selectively perform a sensing when a display panel operates in an ON state. The timing controller performs a sensing to the display panel on the basis of a temperature of the display panel, a time difference in operation of the display panel, and a degree of need for sensing of representative sub-pixels.
Abstract:
An organic light emitting diode (OLED) display is discussed. The OLED display is capable of duty driving for controlling an emission duty of an OLED in one frame. One frame for the duty driving includes a programming period, an emission period, and a non-emission period. In the programming period, a first data voltage is applied to a gate node in response to a scan signal and a reference voltage is applied to a source node in response to a sensing signal. In the non-emission period, a second data voltage is applied to the gate node in response to the scan signal. The first data voltage corresponds to input video data to be applied to a first pixel. The second data voltage corresponds to input video data to be applied to a second pixel different from the first pixel.
Abstract:
A display device includes: a display panel in which a plurality of data lines and a plurality of gate lines intersect in a matrix form and pixels are formed at intersecting points thereof; a data drive unit connected to the plurality of data lines and configured to output a black data voltage corresponding to a gradation level of 0 and expressing the black data voltage as a third voltage through the data lines, the third voltage greater than a first voltage, which is a minimum output value, and less than or equal to a second voltage corresponding to a gradation level of 0 when linearly extending data voltages of two or more low gradation levels; a gamma voltage supply unit outputting a gamma voltage for each gradation level to the data drive unit; and a timing controller generating a control signal to control driving of the display panel.
Abstract:
Provided is a thin film transistor having an oxide semiconductor material for an organic light emitting diode display and a method for manufacturing the same. The organic light emitting diode display includes a gate electrode formed on a substrate; a gate insulating layer formed on the gate electrode; a semiconductor layer formed on the gate insulating layer to overlap with the gate electrode, and including a channel area and source and drain areas which extend from the channel area to both outsides, respectively and are conductorized; an etch stopper formed on the channel area and exposing the source area and the drain area; a source electrode contacting portions of the exposed source electrode; and a drain electrode contacting portions of the exposed drain electrode.
Abstract:
A display device for preventing a defective drive and improving reliability is disclosed. The display device includes a substrate including a display portion and a pad portion outside the display portion, a plurality of power lines positioned on the pad portion of the substrate and extended from the display portion, a plurality of data lines positioned in parallel with the plurality of power lines and extended from the display portion, and a plurality of bridge electrodes configured to connect at least two of the plurality of power lines. Some of the plurality of power lines include a power pad electrode on at least an end of the corresponding power line, and a number of the power pad electrodes is less than a number of the power lines.
Abstract:
An organic light emitting diode display includes a substrate; a buffer layer on the substrate; a scan line running to a horizontal direction on the buffer layer; an intermediate insulating layer covering the scan line; a first trench having a segment shape apart from the scan line with a predetermined distance and exposing some of the substrate by patterning the intermediate insulating layer and the buffer layer; a data line running to a vertical direction on the substrate exposed by the first trench and on the intermediate insulating layer; a passivation layer covering the data line and the scan line; and a color filter filling into the trench and depositing on the passivation layer.
Abstract:
The present exemplary embodiments relate to measurement of a characteristic of a driving transistor and sensing driving therefor. Provided are a data driver, an organic light emitting display panel, an organic light emitting display device, and a driving method thereof which are capable of measuring characteristics of a driving transistor even at a data voltage which is not so high within a short sensing time by simultaneously sensing the characteristics of the driving transistors for two or more sub pixels, among a plurality of sub pixels commonly connected to the sensing lines, while measuring characteristics (for example, a threshold voltage or a mobility) of the driving transistor.