Abstract:
An organic light emitting diode (OLED) display device and a method for driving the same, are capable of achieving an enhancement in response characteristics of OLEDs and an enhancement in display picture quality through application of an overdriving (or accelerated driving) method taking into consideration intrinsic response characteristics of OLEDs. The OLED display device includes an image display panel including a plurality of pixel regions, and a driving integrated circuit for converting digital image data into an analog image signal, generating a plurality of gamma voltage levels through modulation, for overdriving or accelerated driving of the analog image signal, and modulating gray levels of the digital image data such that the modulated gray levels correspond to the modulated gamma voltage levels, for display of an image according to the modulated image data on the image display panel.
Abstract:
An OLED display device and a method of fabricating the same are disclosed. The OLED display device includes a substrate including a display area provided with an organic light emitting element and a pad area provided with a plurality of pads, the pad area formed around the display area, an encapsulation layer formed on the substrate such that the encapsulation layer covers the organic light emitting element, and a dam formed between the display area and the pad area, the dam controlling flow of an organic film material constituting the encapsulation layer.
Abstract:
An OLED display device and a method of fabricating the same are disclosed. The OLED display device includes a substrate including a display area provided with an organic light emitting element and a pad area provided with a plurality of pads, the pad area formed around the display area, an encapsulation layer formed on the substrate such that the encapsulation layer covers the organic light emitting element, and a dam formed between the display area and the pad area, the dam controlling flow of an organic film material constituting the encapsulation layer.
Abstract:
An electroluminescent display device is provided. The device includes a substrate on which a display area displaying an image and a non-display area surrounding the display area are defined. The device includes a thin film transistor and a light-emitting diode disposed in the display area on the substrate and electrically connected to each other. The device further includes an encapsulation part covering the thin film transistor and the light-emitting diode, a touch sensor part on the encapsulation part, and first and second crack stoppers disposed in the non-display area on the substrate. The second crack stopper is disposed between the first crack stopper and the display area. The first crack stopper includes a first pattern that is formed through a same process as an electrode layer of the touch sensor part.
Abstract:
An OLED display device and a method of fabricating the same are disclosed. The OLED display device includes a substrate including a display area provided with an organic light emitting element and a pad area provided with a plurality of pads, the pad area formed around the display area, an encapsulation layer formed on the substrate such that the encapsulation layer covers the organic light emitting element, and a dam formed between the display area and the pad area, the dam controlling flow of an organic film material constituting the encapsulation layer.
Abstract:
An OLED display device and a method of fabricating the same are disclosed. The OLED display device includes a substrate including a display area provided with an organic light emitting element and a pad area provided with a plurality of pads, the pad area formed around the display area, an encapsulation layer formed on the substrate such that the encapsulation layer covers the organic light emitting element, and a dam formed between the display area and the pad area, the dam controlling flow of an organic film material constituting the encapsulation layer.
Abstract:
An organic light emitting diode (OLED) display device and a method for driving the same, are capable of achieving an enhancement in response characteristics of OLEDs and an enhancement in display picture quality through application of an overdriving (or accelerated driving) method taking into consideration intrinsic response characteristics of OLEDs. The OLED display device includes an image display panel including a plurality of pixel regions, and a driving integrated circuit for converting digital image data into an analog image signal, generating a plurality of gamma voltage levels through modulation, for overdriving or accelerated driving of the analog image signal, and modulating gray levels of the digital image data such that the modulated gray levels correspond to the modulated gamma voltage levels, for display of an image according to the modulated image data on the image display panel.