Abstract:
An organic light emitting display includes a display panel, which includes a plurality of pixels and displays an image, and a data driving circuit differently outputting a compensation voltage depending on a sensing value based on a driving current. Each of the plurality of pixels includes an organic light emitting diode, a driving thin film transistor (TFT) having a double gate structure including a main gate electrode and a sub-gate electrode, a switching TFT applying a data voltage determining the driving current to the main gate electrode of the driving TFT, and a compensation TFT applying the compensation voltage for compensating for a shift amount of a threshold voltage of the driving TFT to the sub-gate electrode of the driving TFT.
Abstract:
An organic light emitting display includes a display panel, which includes a plurality of pixels and displays an image, and a data driving circuit differently outputting a compensation voltage depending on a sensing value based on a driving current. Each of the plurality of pixels includes an organic light emitting diode, a driving thin film transistor (TFT) having a double gate structure including a main gate electrode and a sub-gate electrode, a switching TFT applying a data voltage determining the driving current to the main gate electrode of the driving TFT, and a compensation TFT applying the compensation voltage for compensating for a shift amount of a threshold voltage of the driving TFT to the sub-gate electrode of the driving TFT.
Abstract:
A flexible display device and a method for manufacturing a flexible display device are provided. A flexible display device includes: a support substrate having a first thickness and including a first material, the support substrate further including first and second main faces opposite to each other, a buffer substrate on the first main face of the support substrate, the buffer substrate having a second thickness smaller than the first thickness, and the buffer substrate including a second material more flexible than the first material, a thin-film transistor array on the buffer substrate, such that the buffer substrate is between the thin-film transistor array and the support substrate, and a sealing substrate fixed above the thin-film transistor array, the thin-film transistor array being between the buffer substrate and the sealing substrate.
Abstract:
Embodiments described herein provide method for forming crystalline indium-gallium-zinc oxide (IGZO). A substrate is provided. An IGZO layer is formed above the substrate. The IGZO layer is annealed in an environment consisting essentially of nitrogen gas.
Abstract:
Embodiments described herein provide method for forming crystalline indium-gallium-zinc oxide (IGZO). A substrate is provided. An IGZO layer is formed above the substrate. The IGZO layer is annealed in an environment consisting essentially of nitrogen gas.
Abstract:
Embodiments described herein provide method for forming crystalline indium-gallium-zinc oxide (IGZO). A substrate is provided. A seed layer is formed above the substrate. The seed layer has a crystalline structure that is substantially dominant along the c-axis. An IGZO layer is formed above the seed layer. The seed layer may include zinc oxide. A stack of alternating seed layers and IGZO layers may be formed.
Abstract:
Embodiments described herein provide method for forming crystalline indium-gallium-zinc oxide (IGZO). A substrate is provided. A layer is formed above the substrate using a PVD process. The layer includes indium, gallium, zinc, or a combination thereof. The PVD process is performed in a gaseous environment having a pressure of between about 1 mT and about 5 mT and including between about 20% and about 100% oxygen gas. The PVD process may be performed at a processing temperature between about 25° C. and about 400° C. The duty cycle of the PVD process may be between about 70% and about 100%.
Abstract:
Embodiments described herein provide method for forming crystalline indium-gallium-zinc oxide (IGZO). A substrate is positioned relative to at least one target. The at least one target includes indium, gallium, zinc, or a combination thereof. A substantially constant voltage is provided across the substrate and the at least one target to cause a plasma species to impact the at least one target. The impacting of the plasma species on the at least one target causes material to be ejected from the at least one target to form an IGZO layer above the substrate.
Abstract:
Embodiments described herein provide method for forming crystalline indium-gallium-zinc oxide (IGZO). A substrate is provided. A seed layer is formed above the substrate. The seed layer has a crystalline structure that is substantially dominant along the c-axis. An IGZO layer is formed above the seed layer. The seed layer may include zinc oxide. A stack of alternating seed layers and IGZO layers may be formed.
Abstract:
A liquid crystal display device including a touch panel having a simple structure and minimized thickness is provided. The liquid crystal display (LCD) device according to an embodiment includes a liquid crystal panel and a touch panel structure. The liquid crystal panel includes a thin film transistor (TFT) array substrate, a color filter substrate having a black matrix therein, and a liquid crystal layer disposed between the TFT array substrate and the color filter substrate. The touch panel structure includes at least one touch sensor. Each touch sensor includes a first electrode disposed within the liquid crystal panel, and a second electrode disposed outside the liquid crystal panel.