摘要:
Provided are inverse phase allotrope rare earth (IPARE) magnets, methods of forming thereof, and applications of IPARE magnets. Unlike conventional samarium-cobalt magnets, IPARE magnets maintain their hexagonal lattice structures over a range of equiatomic compositions, such as when concentrations of different elements are within 10 atomic % of each other. An IPARE magnet may comprise cobalt, iron, copper, nickel, and samarium and a concentration of cobalt may be between 17-27 atomic %. An IPARE magnet may be substantially free from zirconium and/or titanium. An IPARE magnet may be formed by quenching a molten mixture of its components. The quenching may be performed in a magnetic field. After quenching, the IPARE magnet may be machined. Furthermore, IPARE magnets may be used as a structural element, e.g. in an electric motor.
摘要:
Provided are selector elements with active components comprising insulating matrices and mobile ions disposed within these insulating matrices. Also provided are methods of operating such selector elements. The insulating matrices and mobile ions may be formed from different combinations of materials. For example, the insulating matrix may comprise amorphous silicon or silicon oxide, while mobile ions may be silver ions. In another example, the active component comprises copper and germanium, selenium, or tellerium, e.g., Se61Cu39, Se67Cu33, or Se56Cu44. The active component may be a multilayered structure with a variable composition throughout the structure. For example, the concentration of mobile ions may be higher in a center of the structure, away from the electrode interfaces. In some embodiments, outer layers may be formed from Ge33Se24Cu47, while the middle layer may be formed from Ge47Se29Cu24.
摘要:
ALD of HfxAlyCz films using hafnium chloride (HfCl4) and Trimethylaluminum (TMA) precursors can be combined with post-deposition anneal processes and ALD liners to control the device characteristics in high-k metal-gate devices. Variation of the HfCl4 pulse time allows for control of the Al % incorporation in the HfxAlyCz film in the range of 10-13%. Combinatorial process tools can be employed for rapid electrical and materials characterization of various materials stacks. The effective work function (EWF) in metal oxide semiconductor capacitor (MOSCAP) devices with the HfxAlyCz work function layer coupled with ALD deposited HfO2 high-k gate dielectric layers was quantified to be mid-gap at ˜4.6 eV. Thus, HfxAlyCz is a promising metal gate work function material allowing for the tuning of device threshold voltages (Vth) for anticipated multi-Vth integrated circuit (IC) devices.
摘要:
Methods for producing RRAM resistive switching elements having reduced forming voltage include doping to create oxygen deficiencies in the dielectric film. Oxygen deficiencies in a dielectric film promote formation of conductive pathways.
摘要:
Embodiments provided herein describe methods and chemical solutions for cleaning photomasks. A photomask is provided. The photomask is exposed to a chemical solution. The chemical solution includes a quaternary ammonium hydroxide.The quaternary ammonium hydroxide may include at least one of tetraethyl ammonium hydroxide (TEAH), tetrapropyl ammonium hydroxide (TPAH), or a combination thereof. The photomask may be an extreme ultraviolet (EUV) lithography photomask.
摘要:
In a “window-junction” formation process for Josephson junction fabrication, a spacer dielectric is formed over the first superconducting electrode layer, then an opening (the “window” is formed to expose the part of the electrode layer to be used for the junction. In an atomic layer deposition (ALD) chamber (or multi-chamber sealed system) equipped with direct or remote plasma capability, the exposed part of the electrode is sputter-etched with Ar, H2, or a combination to remove native oxides, etch residues, and other contaminants. Optionally, an O2 or O3 pre-clean may precede the sputter etch. When the electrode is clean, the tunnel barrier layer is deposited by ALD in-situ without further oxidant exposure.
摘要:
Provided are methods for processing semiconductor substrates or, more specifically, etching silicon containing antireflective coatings (SiARCs) from the substrates while preserving silicon oxides layers disposed on the same substrates. An etching solution including sulfuric acid and hydrofluoric acid may be used for these purposes. In some embodiments, the weight ratio of sulfuric acid to hydrofluoric acid in the etching solution is between about 15:1 and 100:1 (e.g., about 60:1). The temperature of the etching solution may be between about 30° C. and 50° C. (e.g., about 40° C., during etching). It has been found that such processing conditions provide a SiARC etching rate of at least about 50 nanometers per minute and selectivity of SiARC over silicon oxide of greater than about 10:1 or even greater than about 50:1. The same etching solution may be also used to remove photoresist, organic dielectric, and titanium nitride.
摘要:
Embodiments provided herein describe low-e panels and methods for forming low-e panels. A transparent substrate is provided. A reflective layer is formed above the transparent substrate. An over-coating layer is formed above the reflective layer. The over-coating layer includes first, second, and third sub-layers. The second sub-layer is between the first and third sub-layers, and the first and third sub-layers include the same material.
摘要:
Selector devices that can be suitable for memory device applications can have low leakage currents at low voltages to reduce sneak current paths for non selected devices, and high leakage currents at high voltages to minimize voltage drops during device switching. In some embodiments, the selector device can include a first electrode, a tri-layer dielectric layer, and a second electrode. The tri-layer dielectric layer can include a high leakage dielectric layer sandwiched between two lower leakage dielectric layers. The low leakage layers can function to restrict the current flow across the selector device at low voltages. The high leakage dielectric layer can function to enhance the current flow across the selector device at high voltages.
摘要:
Provided are light emitting diodes (LEDs) and methods of fabricating such LEDs. An LED may include a transparent conductive oxide (TCO) layer having a varying refractive index. For example, the refractive index may be higher at the interface of the TCO layer with an epitaxial stack than on the side of the TCO layer. The refractive index variability allows reducing light intensity losses in the LED. The refractive index variability may be achieved by feeding a substrate through a deposition chamber having a variable concentration of at least one process gas, such as oxygen. Specifically, the concentration of the process gas may be higher at one slit opening than at another slit opening. As the substrate moves through the deposition chamber, the TCO layer is continuously deposited. Due to the concentration variability, the resulting TCO layer may have a variable composition throughout the thickness of the TCO layer.