Abstract:
Disclosed are a robot cleaner, a controlling method of the same, and a robot cleaning system. The robot cleaner can perform a cleaning operation with respect to only a user's desired region, in a repeated and concentrated manner. Further, as the robot cleaner runs on a user's desired region in a manual manner, a designated region can be precisely set. Further, as the robot cleaner performs a cleaning operation by setting a user's desired region, only a simple configuration is added to a terminal device such as a remote control unit. Accordingly, additional costs can be reduced, and a malfunction can be prevented.
Abstract:
A cleaner performing autonomous traveling includes a main body, first and second cameras photographing the periphery of the main body, and a controller controlling the first and second cameras to capture an image according to preset order, wherein a direction in which the first camera is directed and a direction in which the second camera is directed form a predetermined angle, and the controller generates three-dimensional (3D) coordinate information related to an object located near the main body using images obtained in the first and second cameras.
Abstract:
A cleaner includes a main body having a suction port, a cleaning unit provided in the main body to suck a cleaning object through the suction port, a driving unit moving the main body, a camera provided in the main body and photographing an image, and a controller detecting a vanishing point related to the image and detecting information related to a posture of the main body based on the detected vanishing point.
Abstract:
The present disclosure relates to a transmitter of a moving robot system and a method for detecting removal of the transmitter, wherein the transmitter is provided with a detection module configured to detect whether the transmitter is separated from a ground on a bottom surface of a main body of the transmitter to detect whether the transmitter is removed according to a separation distance between the main body and the ground to thereby externally inform a result of the detection.
Abstract:
A charging station of a moving robot includes connection terminals provided on two surfaces so as to allow a boundary wire, that defines a boundary of a travel area of the moving robot, to be connected thereto. The charging station has a charging unit to charge the moving robot and a docking base to dock the moving robot during charging. The charging unit includes the connection terminals.
Abstract:
Disclosed are a robot cleaner, a controlling method of the same, and a robot cleaning system. The robot cleaner can perform a cleaning operation with respect to only a user's desired region, in a repeated and concentrated manner. Further, as the robot cleaner runs on a user's desired region in a manual manner, a designated region can be precisely set. Further, as the robot cleaner performs a cleaning operation by setting a user's desired region, only a simple configuration is added to a terminal device such as a remote control unit. Accordingly, additional costs can be reduced, and a malfunction can be prevented.
Abstract:
The present disclosure discloses a docking device including a charging terminal, a power supply unit for supplying power to the charging terminal, a communication module for exchanging data with a mobile robot, a voice recognition module for collecting a voice and extracting a voice command from the collected voice, and a charging-station controller for controlling the communication module to transmit the voice command extracted from the voice recognition module to the mobile robot.
Abstract:
A charging station of a moving robot includes connection terminals provided on two surfaces so as to allow a boundary wire, that defines a boundary of a travel area of the moving robot, to be connected thereto. The charging station has a charging unit to charge the moving robot and a docking base to dock the moving robot during charging. The charging unit includes the connection terminals.
Abstract:
A method of controlling a robot cleaner includes recognizing information on a monitoring standby position by a robot cleaner, moving to the monitoring standby position at a monitoring start time by the robot cleaner, acquiring an image, by an image acquisition unit of the robot cleaner, at the monitoring standby position, determining whether an event has occurred, by the robot cleaner, based on the image acquired by the image acquisition unit, transmitting the image acquired by the image acquisition unit to an external remote terminal when it is determined that the event occurred.
Abstract:
Disclosed are a robot cleaner, a controlling method of the same, and a robot cleaning system. The robot cleaner can perform a cleaning operation with respect to only a user's desired region, in a repeated and concentrated manner. Further, as the robot cleaner runs on a user's desired region in a manual manner, a designated region can be precisely set. Further, as the robot cleaner performs a cleaning operation by setting a user's desired region, only a simple configuration is added to a terminal device such as a remote control unit. Accordingly, additional costs can be reduced, and a malfunction can be prevented.