-
公开(公告)号:US10211593B1
公开(公告)日:2019-02-19
申请号:US15828415
申请日:2017-11-30
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Laurance S. Lingvay , Alain Villeneuve , Jason M. Eichenholz
Abstract: In one embodiment, an optical amplifier includes a first pump laser diode and a second pump laser diode. The first pump laser diode is configured to produce pump light that includes a first amount of optical power at a first wavelength, and the second pump laser diode is configured to produce pump light that includes a second amount of optical power at a second wavelength different from the first wavelength. The optical amplifier also includes an optical gain fiber configured to receive the pump light from the first and second pump laser diodes and provide optical gain for an optical signal propagating through the optical gain fiber. The optical amplifier further includes a controller configured to adjust the first amount of optical power produced by the first pump laser diode and the second amount of optical power produced by the second pump laser diode.
-
公开(公告)号:US20180364356A1
公开(公告)日:2018-12-20
申请号:US15364085
申请日:2016-11-29
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin
Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan at least a portion of the emitted pulses of light across a field of regard. The lidar system also includes a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system.
-
公开(公告)号:US09874635B1
公开(公告)日:2018-01-23
申请号:US15470718
申请日:2017-03-27
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin
CPC classification number: G01S17/06 , G01S7/4804 , G01S7/4811 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4817 , G01S7/4818 , G01S7/483 , G01S7/484 , G01S7/4861 , G01S7/4863 , G01S7/4865 , G01S17/00 , G01S17/02 , G01S17/08 , G01S17/10 , G01S17/32 , G01S17/42 , G01S17/88 , G01S17/89 , G01S17/936 , H01S3/0007 , H01S3/0078 , H01S3/0085 , H01S3/06733 , H01S3/0675 , H01S3/06754 , H01S3/06758 , H01S3/08086 , H01S3/094003 , H01S3/094042 , H01S3/094076 , H01S3/0941 , H01S3/10023 , H01S3/1106 , H01S3/1608 , H01S3/2383 , H01S5/0057 , H01S5/0085 , H01S5/4012 , H01S5/4087 , H01S2301/02
Abstract: A lidar system having a light source to emit an output beam and an overlap mirror having a reflecting surface with an aperture through which the output beam passes. The lidar system may include mirrors driven by a galvanometer scanner, a resonant scanner, a microelectromechanical systems device, or a voice coil motor. The mirrors may direct the output beam toward a light source field of view (FOV) and may move the light source FOV to different locations within a field of regard. The mirrors may receive reflected portions of the output beam as an input beam and direct the input beam toward the reflecting surface of the overlap mirror. The lidar system may include a receiver to receive the input beam from the reflecting surface of the overlap mirror. The receiver may have a receiver FOV that moves synchronously with, and at least partially overlaps, the light source FOV.
-
公开(公告)号:US09804264B2
公开(公告)日:2017-10-31
申请号:US15470730
申请日:2017-03-27
Applicant: Luminar Technologies, Inc.
Inventor: Alain Villeneuve , Jason M. Eichenholz
CPC classification number: G01S17/06 , G01S7/4804 , G01S7/4811 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4817 , G01S7/4818 , G01S7/483 , G01S7/484 , G01S7/4861 , G01S7/4863 , G01S7/4865 , G01S17/00 , G01S17/02 , G01S17/08 , G01S17/10 , G01S17/32 , G01S17/42 , G01S17/88 , G01S17/89 , G01S17/936 , H01S3/0007 , H01S3/0078 , H01S3/0085 , H01S3/06733 , H01S3/0675 , H01S3/06754 , H01S3/06758 , H01S3/08086 , H01S3/094003 , H01S3/094042 , H01S3/094076 , H01S3/0941 , H01S3/10023 , H01S3/1106 , H01S3/1608 , H01S3/2383 , H01S5/0057 , H01S5/0085 , H01S5/4012 , H01S5/4087 , H01S2301/02
Abstract: A lidar system which includes one or more light sources to produce one or more optical signals and a demultiplexer to separate the one or more optical signals into a plurality of sub-portions which may be distributed to a plurality of sensor heads. The sensor heads emit the sub-portions of the one or more optical signals into a plurality of fields of view and to detect reflected or scattered light from the fields of view. The lidar system also includes one or more optical amplifiers and one or more filters to reduce amplified spontaneous emission produced by the one or more optical amplifiers.
-
公开(公告)号:US20170299721A1
公开(公告)日:2017-10-19
申请号:US15470735
申请日:2017-03-27
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin
CPC classification number: G01S17/06 , G01S7/4804 , G01S7/4811 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4817 , G01S7/4818 , G01S7/483 , G01S7/484 , G01S7/4861 , G01S7/4863 , G01S7/4865 , G01S17/00 , G01S17/02 , G01S17/08 , G01S17/10 , G01S17/32 , G01S17/42 , G01S17/88 , G01S17/89 , G01S17/936 , H01S3/0007 , H01S3/0078 , H01S3/0085 , H01S3/06733 , H01S3/0675 , H01S3/06754 , H01S3/06758 , H01S3/08086 , H01S3/094003 , H01S3/094042 , H01S3/094076 , H01S3/0941 , H01S3/10023 , H01S3/1106 , H01S3/1608 , H01S3/2383 , H01S5/0057 , H01S5/0085 , H01S5/4012 , H01S5/4087 , H01S2301/02
Abstract: A lidar system with a light source to emit a pulse of light into a field of view and a receiver to detect a return pulse of light which is reflected or scattered by a target in the field of view. The receiver may include an avalanche photodiode to generate an electrical-current pulse corresponding to the return pulse and a transimpedance amplifier to produce a voltage pulse that corresponds to the electrical-current pulse. A voltage amplifier may amplify the voltage pulse and a comparator may produce an edge signal when the amplified voltage pulse exceeds a threshold. A time-to-digital converter may determine a time interval based on an emission time of the pulse of light and based on the edge signal. A processor may determine a distance to the target using the time interval.
-
公开(公告)号:US20180120433A1
公开(公告)日:2018-05-03
申请号:US15859170
申请日:2017-12-29
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin
CPC classification number: G01S17/06 , G01S7/4804 , G01S7/4811 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4817 , G01S7/4818 , G01S7/483 , G01S7/484 , G01S7/4861 , G01S7/4863 , G01S7/4865 , G01S17/00 , G01S17/02 , G01S17/08 , G01S17/10 , G01S17/32 , G01S17/42 , G01S17/88 , G01S17/89 , G01S17/936 , H01S3/0007 , H01S3/0078 , H01S3/0085 , H01S3/06733 , H01S3/0675 , H01S3/06754 , H01S3/06758 , H01S3/08086 , H01S3/094003 , H01S3/094042 , H01S3/094076 , H01S3/0941 , H01S3/10023 , H01S3/1106 , H01S3/1608 , H01S3/2383 , H01S5/0057 , H01S5/0085 , H01S5/4012 , H01S5/4087 , H01S2301/02
Abstract: A lidar system with a pulsed laser diode to produce a plurality of optical seed pulses of light at one or more operating wavelengths between approximately 1400 nm and approximately 1600 nm. The lidar system may also include one or more optical amplifiers to amplify the optical seed pulses to produce a plurality of output optical pulses. Each optical amplifier may produce an amount of amplified spontaneous emission (ASE), and the output optical pulses may have characteristics comprising: a pulse repetition frequency of less than or equal to 100 MHz; a pulse duration of less than or equal to 20 nanoseconds; and a duty cycle of less than or equal to 1%. The lidar system may also include one or more optical filters to attenuate the ASE and a receiver to detect at least a portion of the output optical pulses scattered by a target located a distance.
-
公开(公告)号:US20180069367A1
公开(公告)日:2018-03-08
申请号:US15804997
申请日:2017-11-06
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Alain Villeneuve , Joseph G. LaChapelle , Jason M. Eichenholz
CPC classification number: G01S17/105 , G01S7/4804 , G01S7/4811 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4817 , G01S7/4818 , G01S7/483 , G01S7/484 , G01S7/4861 , G01S7/4863 , G01S7/4865 , G01S7/4873 , G01S7/4876 , G01S17/00 , G01S17/02 , G01S17/06 , G01S17/08 , G01S17/10 , G01S17/102 , G01S17/32 , G01S17/42 , G01S17/88 , G01S17/89 , G01S17/936 , H01S3/0007 , H01S3/0078 , H01S3/0085 , H01S3/06733 , H01S3/0675 , H01S3/06754 , H01S3/06758 , H01S3/08086 , H01S3/094003 , H01S3/094042 , H01S3/094076 , H01S3/0941 , H01S3/10023 , H01S3/1106 , H01S3/1608 , H01S3/2383 , H01S5/0057 , H01S5/0085 , H01S5/4012 , H01S5/4087 , H01S2301/02
Abstract: A lidar system comprising with a light source, an optical link, and a sensor head. The light source can include a seed laser to produce pulses of light and an optical preamplifier to amplify the pulses of light. The optical link can convey amplified pulses of light to the sensor head remotely located from the light source. The sensor head can include an optical booster amplifier, a scanner to scan amplified output pulses of light across a field of regard, and a receiver to detect pulses of light scattered by a target located a distance from the sensor head.
-
公开(公告)号:US09823353B2
公开(公告)日:2017-11-21
申请号:US15470735
申请日:2017-03-27
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin
CPC classification number: G01S17/06 , G01S7/4804 , G01S7/4811 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4817 , G01S7/4818 , G01S7/483 , G01S7/484 , G01S7/4861 , G01S7/4863 , G01S7/4865 , G01S17/00 , G01S17/02 , G01S17/08 , G01S17/10 , G01S17/32 , G01S17/42 , G01S17/88 , G01S17/89 , G01S17/936 , H01S3/0007 , H01S3/0078 , H01S3/0085 , H01S3/06733 , H01S3/0675 , H01S3/06754 , H01S3/06758 , H01S3/08086 , H01S3/094003 , H01S3/094042 , H01S3/094076 , H01S3/0941 , H01S3/10023 , H01S3/1106 , H01S3/1608 , H01S3/2383 , H01S5/0057 , H01S5/0085 , H01S5/4012 , H01S5/4087 , H01S2301/02
Abstract: A lidar system with a light source to emit a pulse of light into a field of view and a receiver to detect a return pulse of light which is reflected or scattered by a target in the field of view. The receiver may include an avalanche photodiode to generate an electrical-current pulse corresponding to the return pulse and a transimpedance amplifier to produce a voltage pulse that corresponds to the electrical-current pulse. A voltage amplifier may amplify the voltage pulse and a comparator may produce an edge signal when the amplified voltage pulse exceeds a threshold. A time-to-digital converter may determine a time interval based on an emission time of the pulse of light and based on the edge signal. A processor may determine a distance to the target using the time interval.
-
公开(公告)号:US10557940B2
公开(公告)日:2020-02-11
申请号:US15364085
申请日:2016-11-29
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin , Stephen D. Gaalema
IPC: G01C3/08 , G01S17/10 , G01S17/42 , G01S17/93 , G01S7/481 , G01S7/484 , G01S17/08 , H01S3/067 , H01S3/08 , H01S3/094 , H01S3/0941 , H01S3/10 , H01S3/11 , H01S5/40 , G01S7/48 , G01S7/483 , G01S17/02 , H01S3/00 , G01S17/00 , G01S17/06 , G01S17/88 , G01S7/487 , H01S3/16 , G01S17/32
Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan at least a portion of the emitted pulses of light across a field of regard. The lidar system also includes a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system.
-
公开(公告)号:US10520602B2
公开(公告)日:2019-12-31
申请号:US15363795
申请日:2016-11-29
Applicant: Luminar Technologies, Inc.
Inventor: Alain Villeneuve , Jason M. Eichenholz
IPC: G01C3/08 , G01S17/10 , G01S17/42 , G01S17/93 , G01S7/481 , G01S7/484 , G01S17/89 , G01S17/08 , H01S3/067 , H01S3/08 , H01S3/094 , H01S3/0941 , H01S3/10 , H01S3/11 , H01S5/40 , G01S7/48 , G01S7/483 , G01S17/02 , H01S3/00 , G01S17/00 , G01S17/06 , G01S17/88 , G01S7/487 , H01S5/00 , H01S3/23 , H01S3/16 , G01S17/32
Abstract: In one embodiment, a laser system includes a seed laser configured to produce optical seed pulses. The laser system also includes a first fiber-optic amplifier configured to amplify the seed pulses by a first amplifier gain to produce a first-amplifier output that includes amplified seed pulses and amplified spontaneous emission (ASE). The laser system further includes a first optical filter configured to remove from the first-amplifier output an amount of the ASE. The laser system also includes a second fiber-optic amplifier configured to receive the amplified seed pulses from the first optical filter and amplify the received pulses by a second amplifier gain to produce output pulses. The output pulses have output-pulse characteristics that include: a pulse repetition frequency of less than or equal to 100 MHz; a pulse duration of less than or equal to 20 nanoseconds; and a duty cycle of less than or equal to 1%.
-
-
-
-
-
-
-
-
-