摘要:
Apparatus and methods for improved combustion of oxygen and a mixture of a non-gaseous fuel, which includes providing: 1) a source of a mixture of non-gaseous fuel and conveying gas; 2) a source of oxygen; 3) a burner operatively associated with a combustion chamber; 4) a fuel duct in fluid communication with the source of mixed non-gaseous fuel and conveying gas; 5) a tubular oxygen lance fluidly communicating with the source of oxygen; and 6) at least two injection elements in fluid communication with the source of oxygen. The fuel duct includes a portion that extends along an axis towards the burner. The lance is disposed along the axis and has a diameter D. The injection elements are configured to inject oxygen into, and mix therewith, a flow of the mixture upstream of, or at, the burner. At least one of the injection elements receives oxygen from the lance. The injection elements are spaced apart by a distance X, which is greater than the length of diameter D.
摘要:
An injection lance for injecting a fluid over a predefined target area within a system includes a support block with an inlet side and an outlet side. A plurality of channels are disposed non-parallel with respect to each other within the support block and extend between the inlet and outlet sides of the support block so as to receive fluid at the inlet side and deliver fluid through the support block for injection from the outlet side of the support block over the target area. At least two channels extend from the inlet side toward the outlet side in a direction away from a central axis of the support block, where the central axis intersects the outlet side. The target area includes a plurality of consecutively aligned sectors, and the channels are oriented within the support block so that a central axis of a fluid stream injected from each channel over the target area is centered between longitudinal boundaries defined by a respective sector.
摘要:
An injection lance for injecting a fluid over a predefined target area within a system includes a support block with an inlet side and an outlet side. A plurality of channels are disposed non-parallel with respect to each other within the support block and extend between the inlet and outlet sides of the support block so as to receive fluid at the inlet side and deliver fluid through the support block for injection from the outlet side of the support block over the target area. At least two channels extend from the inlet side toward the outlet side in a direction away from a central axis of the support block, where the central axis intersects the outlet side. The target area includes a plurality of consecutively aligned sectors, and the channels are oriented within the support block so that a central axis of a fluid stream injected from each channel over the target area is centered between longitudinal boundaries defined by a respective sector.
摘要:
A steam-generating combustion system includes an oxygen enriched gas provided as at least part of an oxidant stream. A combustion chamber receives and combusts a fuel in the oxidant stream and generate steam. The combustion chamber generates flue gas having a flue gas volume which is smaller than a volume of flue gas generated by the combustion chamber when operated with air as the oxidant stream. A flue gas pollutant control system receives the flue gas from the combustion chamber and reduces at least one of particulate matter, SOx, NOx, and mercury. The reduction in flue gas volume allows the implementation of much smaller pollutant control equipment, since the size of the pollutant control units is mainly based on the volume or mass flow rate of flue gas to be treated. Moreover, the system including oxygen-enriched gas in the oxidant will lead to concentrated levels of the pollutants in the flue gas. The high concentrations of pollutants will enhance their absorption in the different pollutant control systems, improving removal efficiency for all species.
摘要:
An improved process for burning solid fuel particles in a combustion chamber and creating a flue gas is disclosed. The method comprises creating a fuel gas stream by mixing the solid fuel particles with a conveying gas, transporting the fuel gas stream through a fuel duct terminating at the combustion chamber at a fuel exit plane and injecting an oxygen stream through an injection device into said fuel gas at an oxygen injection location selected to create a mixing zone to mix the oxygen stream and the fuel gas stream immediately prior to or coincident with combustion of the fuel. Operating parameters of the process can be varied to optimally reduce NOx emissions.
摘要:
An injection lance for injecting a fluid over a predefined target area within a system includes a support block with an inlet side and an outlet side. A plurality of channels are disposed non-parallel with respect to each other within the support block and extend between the inlet and outlet sides of the support block so as to receive fluid at the inlet side and deliver fluid through the support block for injection from the outlet side of the support block over the target area. At least two channels extend from the inlet side toward the outlet side in a direction away from a central axis of the support block, where the central axis intersects the outlet side. The target area includes a plurality of consecutively aligned sectors, and the channels are oriented within the support block so that a central axis of a fluid stream injected from each channel over the target area is centered between longitudinal boundaries defined by a respective sector.
摘要:
A steam-generating combustion system includes an oxygen enriched gas provided as at least part of an oxidant stream. A combustion chamber receives and combusts a fuel in the oxidant stream and generate steam. The combustion chamber generates flue gas having a flue gas volume which is smaller than a volume of flue gas generated by the combustion chamber when operated with air as the oxidant stream. A flue gas pollutant control system receives the flue gas from the combustion chamber and reduces at least one of particulate matter, SOx, NOx, and mercury. The reduction in flue gas volume allows the implementation of much smaller pollutant control equipment, since the size of the pollutant control units is mainly based on the volume or mass flow rate of flue gas to be treated. Moreover, the system including oxygen-enriched gas in the oxidant will lead to concentrated levels of the pollutants in the flue gas. The high concentrations of pollutants will enhance their absorption in the different pollutant control systems, improving removal efficiency for all species.
摘要:
A steam-generating combustion system includes an oxygen enriched gas provided as at least part of an oxidant stream. A combustion chamber receives and combusts a fuel in the oxidant stream and generate steam. The combustion chamber generates flue gas having a flue gas volume which is smaller than a volume of flue gas generated by the combustion chamber when operated with air as the oxidant stream. A flue gas pollutant control system receives the flue gas from the combustion chamber and reduces at least one of particulate matter, SOx, NOx, and mercury. The reduction in flue gas volume allows the implementation of much smaller pollutant control equipment, since the size of the pollutant control units is mainly based on the volume or mass flow rate of flue gas to be treated. Moreover, the system including oxygen-enriched gas in the oxidant will lead to concentrated levels of the pollutants in the flue gas. The high concentrations of pollutants will enhance their absorption in the different pollutant control systems, improving removal efficiency for all species.