Abstract:
A vehicular driver monitoring system includes a driver status information acquisition system and an in-vehicle control system of the vehicle. The driver status information acquisition system receives data from a plurality of sensors in the vehicle and determines the driver status responsive to processing of the received data. While the driver is not driving the vehicle and the in-vehicle control system is autonomously driving the vehicle, and responsive to determination that the driver of the vehicle should take over driving the vehicle from the in-vehicle control system, the in-vehicle control system alerts the driver to indicate that the driver should take over driving the vehicle. Responsive to the status of the driver while the driver is not driving the vehicle being indicative of the driver not being able to take over driving the vehicle, the in-vehicle control system continues driving the vehicle and initiates an emergency action.
Abstract:
A communication system for a vehicle includes a control operable to communicate with a device remote from the vehicle, and an antenna disposed at an exterior portion of the vehicle. The control at least one of (i) wirelessly transmits signals via the antenna to a remote receiver and (ii) receives signals via the antenna wirelessly transmitted by a remote transmitter. A heater element is disposed at or near the antenna. The heater element is electrically connected to a power source of the vehicle and is energizable by the power source to generate heat to melt snow or ice at or near the antenna. The heater element may include a graphene trace disposed at a panel or housing at or near the antenna.
Abstract:
A vehicular control system includes at least one camera disposed in a vehicle and viewing a driver of the vehicle who is sitting in a driver seat of the vehicle. The vehicular control system is operable to drive the vehicle along a road in accordance with SAE Level 3. The vehicular control system determines, at least in part via processing of image data captured by the at least one camera, ability of the driver to take over driving the vehicle from the vehicular control system. While the vehicular control system is driving the vehicle in accordance with SAE Level 3, and responsive at least in part to determination by the vehicular control system that the driver is not able to take over driving the vehicle from the vehicular control system, the vehicular control system continues driving the vehicle in accordance with SAE Level 3 and initiates an emergency action.
Abstract:
A method of estimating a distance between a mobile unit and a vehicle includes providing a time of flight subsystem including circuitry incorporated in the mobile unit and circuitry incorporated in the vehicle, and generating a time of flight distance signal by periodically transmitting a time of flight signal between the mobile unit and the vehicle and measuring the time taken for transmission of the time of flight signal therebetween. A travel sensor is disposed at the mobile unit and generates a travel sensor signal. A value of a distance estimate signal is initialized based on the time of flight distance signal. A movement of the mobile unit is determined based on variance in the travel sensor signal. The initialized value of the initialized distance estimate signal is changed or increased or decreased based upon determination of movement of the mobile unit.
Abstract:
A vehicular driver monitoring system includes a driver status information acquisition system and an in-vehicle control system of the vehicle. The driver status information acquisition system receives data from a plurality of sensors in the vehicle and determines the driver status responsive to processing of the received data. While the driver is not driving the vehicle and the in-vehicle control system is autonomously driving the vehicle, and responsive to determination that the driver of the vehicle should take over driving the vehicle from the in-vehicle control system, the in-vehicle control system alerts the driver to indicate that the driver should take over driving the vehicle. Responsive to the status of the driver while the driver is not driving the vehicle being indicative of the driver not being able to take over driving the vehicle, the in-vehicle control system continues driving the vehicle and initiates an emergency action.
Abstract:
A driver monitoring system for a vehicle includes a vehicle data acquisition system operable to determine vehicle status information after a vehicle is involved in a collision including information pertaining to (i) the collision of the vehicle, (ii) an overturning of the vehicle, (iii) water intrusion into the vehicle and (iv) airbag deployment. A driver status information acquisition system is operable to determine health parameters of the driver of the vehicle. A communication system of the vehicle is operable to wirelessly communicate with a remote assistance system. Responsive to the vehicle status information determined by the vehicle data acquisition system and the driver health parameters determined by the driver information acquisition system, the communication system wirelessly communicates information to the remote assistance system and, responsive to the communication received by the remote assistance system, the remote assistance system determines an appropriate response to the vehicle collision.
Abstract:
A communication system for a vehicle includes a control operable to communicate with a device remote from the vehicle, and an antenna disposed at an exterior portion of the vehicle. The control at least one of (i) wirelessly transmits signals via the antenna to a remote receiver and (ii) receives signals via the antenna wirelessly transmitted by a remote transmitter. A heater element is disposed at or near the antenna. The heater element is electrically connected to a power source of the vehicle and is energizable by the power source to generate heat to melt snow or ice at or near the antenna. The heater element may include a graphene trace disposed at a panel or housing at or near the antenna.
Abstract:
A method of estimating a distance between a mobile unit and a vehicle includes providing a time of flight subsystem including circuitry incorporated in the mobile unit and circuitry incorporated in the vehicle, and generating a time of flight distance signal by periodically transmitting a time of flight signal between the mobile unit and the vehicle and measuring the time taken for transmission of the time of flight signal therebetween. A travel sensor is disposed at the mobile unit and generates a travel sensor signal. A value of a distance estimate signal is initialized based on the time of flight distance signal. A movement of the mobile unit is determined based on variance in the travel sensor signal. The initialized value of the initialized distance estimate signal is changed or increased or decreased based upon determination of movement of the mobile unit.
Abstract:
A driver monitoring system for a vehicle includes a vehicle data acquisition system operable to determine vehicle status information after a vehicle is involved in a collision including information pertaining to (i) the collision of the vehicle, (ii) an overturning of the vehicle, (iii) water intrusion into the vehicle and (iv) airbag deployment. A driver status information acquisition system is operable to determine health parameters of the driver of the vehicle. A communication system of the vehicle is operable to wirelessly communicate with a remote assistance system. Responsive to the vehicle status information determined by the vehicle data acquisition system and the driver health parameters determined by the driver information acquisition system, the communication system wirelessly communicates information to the remote assistance system and, responsive to the communication received by the remote assistance system, the remote assistance system determines an appropriate response to the vehicle collision.