-
公开(公告)号:US12181679B2
公开(公告)日:2024-12-31
申请号:US18319745
申请日:2023-05-18
Applicant: Magic Leap, Inc.
Inventor: Jeffrey Dean Schmulen , Neal Paul Ricks , Samarth Bhargava , Kevin Messer , Victor Kai Liu , Matthew Grant Dixon , Xiaopei Deng , Marlon Edward Menezes , Shuqiang Yang , Vikramjit Singh , Kang Luo , Frank Y. Xu
Abstract: Display devices include waveguides with in-coupling optical elements that mitigate re-bounce of in-coupled light to improve overall in-coupling efficiency and/or uniformity. A waveguide receives light from a light source and/or projection optics and includes an in-coupling optical element that in-couples the received light to propagate by total internal reflection in a propagation direction within the waveguide. Once in-coupled into the waveguide the light may undergo re-bounce, in which the light reflects off a waveguide surface and, after the reflection, strikes the in-coupling optical element. Upon striking the in-coupling optical element, the light may be partially absorbed and/or out-coupled by the optical element, thereby effectively reducing the amount of in-coupled light propagating through the waveguide. The in-coupling optical element can be truncated or have reduced diffraction efficiency along the propagation direction to reduce the occurrence of light loss due to re-bounce of in-coupled light, resulting in less in-coupled light being prematurely out-coupled and/or absorbed during subsequent interactions with the in-coupling optical element.
-
公开(公告)号:US20220365262A1
公开(公告)日:2022-11-17
申请号:US17868485
申请日:2022-07-19
Applicant: Magic Leap, Inc.
Inventor: Shuqiang Yang , Kang Luo , Vikramjit Singh , Frank Y. Xu
Abstract: A method of fabricating a blazed diffraction grating comprises providing a master template substrate and imprinting periodically repeating lines on the master template substrate in a plurality of master template regions. The periodically repeating lines in different ones of the master template regions extend in different directions. The method additionally comprises using at least one of the master template regions as a master template to imprint at least one blazed diffraction grating pattern on a grating substrate.
-
公开(公告)号:US20210191025A1
公开(公告)日:2021-06-24
申请号:US17194878
申请日:2021-03-08
Applicant: Magic Leap, Inc.
Inventor: Shuqiang Yang , Vikramjit Singh , Kang Luo , Nai-Wen Pi , Frank Y. Xu
Abstract: Embodiments of the present disclosure are directed to techniques for manufacturing an eyepiece (or eyepiece layer) by applying multiple, different diffraction gratings to a single side of an eyepiece substrate instead of applying different gratings to different sides (e.g., opposite surfaces) of the substrate. Embodiments are also directed to the eyepiece (or eyepiece layer) that is arranged to have multiple, different diffraction gratings on a single side of the eyepiece substrate. In some embodiments, two or more grating patterns are superimposed to create a combination pattern in a template (e.g., a master), which is then used to apply the combination pattern to a single side of the eyepiece substrate. In some embodiments, multiple layers of patterned material (e.g., with differing refraction indices) are applied to a single side of the substrate. In some examples, the combined grating patterns are orthogonal pupil expander and exit pupil expander grating patterns.
-
公开(公告)号:US20200158942A1
公开(公告)日:2020-05-21
申请号:US16685505
申请日:2019-11-15
Applicant: Magic Leap, Inc.
Inventor: Shuqiang Yang , Vikramjit Singh , Kang Luo , Nai-Wen Pi , Frank Y. Xu, JR.
Abstract: Embodiments of the present disclosure are directed to techniques for manufacturing an eyepiece (or eyepiece layer) by applying multiple, different diffraction gratings to a single side of an eyepiece substrate instead of applying different gratings to different sides (e.g., opposite surfaces) of the substrate. Embodiments are also directed to the eyepiece (or eyepiece layer) that is arranged to have multiple, different diffraction gratings on a single side of the eyepiece substrate. In some embodiments, two or more grating patterns are superimposed to create a combination pattern in a template (e.g., a master), which is then used to apply the combination pattern to a single side of the eyepiece substrate. In some embodiments, multiple layers of patterned material (e.g., with differing refraction indices) are applied to a single side of the substrate. In some examples, the combined grating patterns are orthogonal pupil expander and exit pupil expander grating patterns.
-
公开(公告)号:US12055725B2
公开(公告)日:2024-08-06
申请号:US18308404
申请日:2023-04-27
Applicant: Magic Leap, Inc.
Inventor: Kang Luo , Vikramjit Singh , Nai-Wen Pi , Shuqiang Yang , Frank Y. Xu
CPC classification number: G02B27/0172 , G02B6/34 , G02B27/0176 , G02B2027/0178
Abstract: Blazed diffraction gratings provide optical elements in head-mounted display systems to, e.g., incouple light into or out-couple light out of a waveguide. These blazed diffraction gratings may be configured to have reduced polarization sensitivity. Such gratings may, for example, incouple or outcouple light of different polarizations with similar level of efficiency. The blazed diffraction gratings and waveguides may be formed in a high refractive index substrate such as lithium niobate. In some implementations, the blazed diffraction gratings may include diffractive features having a feature height of 40 nm to 120 nm, for example, 80 nm. The diffractive features may be etched into the high index substrate, e.g., lithium niobate.
-
公开(公告)号:US11906763B2
公开(公告)日:2024-02-20
申请号:US17868485
申请日:2022-07-19
Applicant: Magic Leap, Inc.
Inventor: Shuqiang Yang , Kang Luo , Vikramjit Singh , Frank Y. Xu
CPC classification number: G02B5/1857 , G02B5/1842 , G02B27/0172 , G02B2027/0125
Abstract: A method of fabricating a blazed diffraction grating comprises providing a master template substrate and imprinting periodically repeating lines on the master template substrate in a plurality of master template regions. The periodically repeating lines in different ones of the master template regions extend in different directions. The method additionally comprises using at least one of the master template regions as a master template to imprint at least one blazed diffraction grating pattern on a grating substrate.
-
公开(公告)号:US11614573B2
公开(公告)日:2023-03-28
申请号:US17019065
申请日:2020-09-11
Applicant: Magic Leap, Inc.
Inventor: Vikramjit Singh , Kang Luo , Xiaopei Deng , Shuqiang Yang , Frank Y. Xu , Kevin Messer
Abstract: Diffraction gratings provide optical elements in head-mounted display systems to, e.g., incouple light into or out-couple light out of a waveguide. These diffraction gratings may be configured to have reduced polarization sensitivity. Such gratings may, for example, incouple or outcouple light of different polarizations with similar level of efficiency. The diffraction gratings and waveguides may include a transmissive layer and a metal layer. The diffraction grating may comprises a blazed grating.
-
公开(公告)号:US11498261B2
公开(公告)日:2022-11-15
申请号:US17153774
申请日:2021-01-20
Applicant: Magic Leap, Inc.
Inventor: Roy Patterson , Charles Scott Carden , Satish Sadam , Ryan Christiansen , Matthew S. Shafran , Christopher John Fleckenstein , Vikramjit Singh , Michael Nevin Miller , Kang Luo
IPC: B29C59/04 , B29C51/26 , B29C43/22 , B29C43/28 , B29C43/30 , B29C43/34 , B29C43/48 , B29C43/50 , B29C43/52 , B29C43/58 , G03F7/00
Abstract: Systems, apparatus, and methods for double-sided imprinting are provided. An example system includes first rollers for moving a first web including a first template having a first imprinting feature, second rollers for moving a second web including a second template having a second imprinting feature, dispensers for dispensing resist, a locating system for locating reference marks on the first and second webs for aligning the first and second templates, a light source for curing the resist, such that a cured first resist has a first imprinted feature corresponding to the first imprinting feature on one side of the substrate and a cured second resist has a second imprinted feature corresponding to the second imprinting feature on the other side of the substrate, and a moving system for feeding in the substrate between the first and second templates and unloading the double-imprinted substrate from the first and second webs.
-
公开(公告)号:US20210341744A1
公开(公告)日:2021-11-04
申请号:US17379919
申请日:2021-07-19
Applicant: Magic Leap, Inc.
Inventor: Jeffrey Dean Schmulen , Neal Paul Ricks , Samarth Bhargava , Kevin Messer , Victor Kai Liu , Matthew Grant Dixon , Xiaopei Deng , Marlon Edward Menezes , Shuqiang Yang , Vikramjit Singh , Kang Luo , Frank Y. Xu
Abstract: Display devices include waveguides with in-coupling optical elements that mitigate re-bounce of in-coupled light to improve overall in-coupling efficiency and/or uniformity. A waveguide receives light from a light source and/or projection optics and includes an in-coupling optical element that in-couples the received light to propagate by total internal reflection in a propagation direction within the waveguide. Once in-coupled into the waveguide the light may undergo re-bounce, in which the light reflects off a waveguide surface and, after the reflection, strikes the in-coupling optical element. Upon striking the in-coupling optical element, the light may be partially absorbed and/or out-coupled by the optical element, thereby effectively reducing the amount of in-coupled light propagating through the waveguide. The in-coupling optical element can be truncated or have reduced diffraction efficiency along the propagation direction to reduce the occurrence of light loss due to re-bounce of in-coupled light, resulting in less in-coupled light being prematurely out-coupled and/or absorbed during subsequent interactions with the in-coupling optical element.
-
公开(公告)号:US20210271070A1
公开(公告)日:2021-09-02
申请号:US17246936
申请日:2021-05-03
Applicant: Magic Leap, Inc.
Inventor: Kang Luo , Vikramjit Singh , Nai-Wen Pi , Shuqiang Yang , Frank Y. Xu
Abstract: An eyepiece includes a substrate and an in-coupling grating patterned on a single side of the substrate. A first grating coupler is patterned on the single side of the substrate and has a first grating pattern. The first grating coupler is optically coupled to the in-coupling grating. A second grating coupler is patterned on the single side of the substrate adjacent to the first grating coupler. The second grating coupler has a second grating pattern different from the first grating pattern. The second grating coupler is optically coupled to the in-coupling grating.
-
-
-
-
-
-
-
-
-