摘要:
A structure of a magnet wherein a magnet consisting of a magnetic body including iron and rare earths, a plurality of fluorine compound layers or oxyfluorine compound layers are formed interior of the magnetic body, and the fluorine compound layer or oxyfluorine compound layer has a major axis which is greater than the mean particle size of the crystal grains of the magnetic body.
摘要:
A conventional method for forming an insulating film on a magnet has a difficulty in achieving sufficient improvement in magnetic characteristics due to nonuniformity of a coating film, and an extended time and higher temperature which are required in a thermal treatment. In order to solve the problems, the present invention provides a treating solution composed of an alcohol based solvent and a rare earth fluoride or alkaline earth metal fluoride dispersing in the solvent. In the treating solution, at least one X-ray diffraction peak has a half-value width larger than 1°. The present invention also provides a method for forming an insulating film using the treating solution.
摘要:
A fluoride coating film formed with a fluoride-containing solution wherein a rare earth fluoride or an alkaline earth metal fluoride, in particular, fluoride of Pr, Nd, Dy, Tb and Ho, is swollen in a solvent comprising a major amount of an alcohol, and the solution is a colloidal solution in which the rare earth fluoride or the alkaline earth metal fluoride is dispersed homogeneously in the solvent comprising a major amount of an alcohol improves magnetic properties of NdFeB rare earth magnets including not only sintered magnets but also bonded magnets.
摘要:
An R—Fe—B sintered magnet has a structure including main phase crystal grains and a grain boundary area surrounding the crystal grains. The sintered magnet includes fluorine and a specified metal element selected from elements belonging to Group 2 through Group 16 of periodic table excepting the rare earth element, carbon and boron. The fluorine has a higher concentration in a region closer to a magnet surface than in the center. The specified element also has a higher concentration in the region closer to the surface. The sintered magnet includes oxyfluoride containing carbon, Dy and the metal element in a grain boundary area region at a distance of 1 μm or greater from the magnet surface, and the carbon has a higher concentration than the concentration of the metal element in a region at a distance of 1 μm to 500 μm from the magnet surface.
摘要:
A rotating machine is equipped with a sintered magnet. The sintered magnet includes: a ferromagnetic material consisting mainly of iron; a layer of a fluoride compound or a layer of an oxyfluoride compound formed inside crystal grains or in a portion of grain boundary area of the ferromagnetic material; at least one element selected from the group consisting of alkalis, alkaline earth elements, and rare earth elements and carbon contained in the layer of the fluoride compound or the layer of the oxyfluoride compound; and a continuously extending layer formed by a portion of the layer of the fluoride compound or the layer of the oxyfluoride layer, the continuously extending layer extending from a surface of the ferromagnetic material through the inside of the ferromagnetic material to an opposite side surface of the ferromagnetic material. A ratio of an average concentration of fluorine in an area within 100 μm from the surface of the ferromagnetic material to an average concentration of fluorine in an area including a central part at a distance of at least 100 μm is in the range of 1±0.5, and a concentration gradient of the rare earth elements is present in a matrix near the grain boundary of the ferromagnetic material.
摘要:
A conventional method for forming an insulating film on a magnet has a difficulty in achieving sufficient improvement in magnetic characteristics due to nonuniformity of a coating film, and an extended time and higher temperature which are required in a thermal treatment. In order to solve the problems, the present invention provides a treating solution composed of an alcohol based solvent and a rare earth fluoride or alkaline earth metal fluoride dispersing in the solvent. In the treating solution, at least one X-ray diffraction peak has a half-value width larger than 1°. The present invention also provides a method for forming an insulating film using the treating solution.
摘要:
A fluoride coating film formed with a fluoride-containing solution wherein a rare earth fluoride or an alkaline earth metal fluoride, in particular, fluoride of Pr, Nd, Dy, Tb and Ho, is swollen in a solvent comprising a major amount of an alcohol, and the solution is a colloidal solution in which the rare earth fluoride or the alkaline earth metal fluoride is dispersed homogeneously in the solvent comprising a major amount of an alcohol improves magnetic properties of NdFeB rare earth magnets including not only sintered magnets but also bonded magnets.
摘要:
An R—Fe—B sintered magnet has a structure including main phase crystal grains and a grain boundary area surrounding the crystal grains. The sintered magnet includes fluorine and a specified metal element selected from elements belonging to Group 2 through Group 16 of periodic table excepting the rare earth element, carbon and boron. The fluorine has a higher concentration in a region closer to a magnet surface than in the center. The specified element also has a higher concentration in the region closer to the surface. The sintered magnet includes oxyfluoride containing carbon, Dy and the metal element in a grain boundary area region at a distance of 1 μm or greater from the magnet surface, and the carbon has a higher concentration than the concentration of the metal element in a region at a distance of 1 μm to 500 μm from the magnet surface.
摘要:
Characteristics of a magnetic material are improved without using a heavy rare earth element as a scarce resource. By incorporating fluorine into a magnetic powder and controlling the crystal orientation in crystal grains, a magnetic material securing magnetic characteristics such as coercive force and residual flux density can be fabricated. As a result, the resource problem with heavy rare earth elements can be solved, and the magnetic material can be applied to magnetic circuits that require a high energy product, including various rotating machines and voice coil motors of hard discs.
摘要:
A manufacturing method of a magnetic core includes a first step of applying a treatment liquid for forming an insulating film to iron powder; a second step of heat-treating the iron powder to which the treatment liquid has been applied, at a temperature higher than 350 degrees; a third step of compacting the heat-treated iron powder to form a magnetic core; and a forth step of heat-treating the magnetic core at a temperature ranging from 600 degrees to 800 degrees.