摘要:
Ferroelectric memory cells are produced according to the stack principle. An adhesive layer is formed between a capacitor electrode of a memory capacitor and a conductive plug. An oxygen diffusion barrier is formed above the adhesive layer and once the ferroelectric has been deposited, the adhesive layer and the barrier are subjected to rapid thermal processing (RTP) in an oxygen atmosphere. An oxygen rate of the adhesive layer and the diffusion coefficient of oxygen in the material of the adhesive layer dependent on the temperature are determined. A diffusion coefficient of silicon in the material of the adhesive layer, dependent on the temperature, is determined. A temperature range for the RTP step from the two diffusion coefficients, determined for a predetermined layer thickness and layer width of the adhesive layer and the oxygen diffusion barrier is calculated, therefore, the siliconization of the adhesive layer occurs more rapidly than its oxidation.
摘要:
The invention relates to a method for producing ferroelectric capacitors that are structured using the stack principle and that are used in integrated semiconductor memory chips. The individual capacitor modules have an oxygen barrier between a lower capacitor electrode and an electrically conductive plug. At a site where it is not covered by the corresponding oxygen barrier, an unstructured adhesive layer is oxidized by the oxygen arising during the tempering process of the ferroelectric and forms insulating segments at the site in such a way that the lower capacitor electrodes of the ferroelectric capacitors are electrically insulated from one another. This makes it possible to dispense with structuring the adhesive layer. Furthermore, the layer serves as a getter of oxygen and inhibits the diffusion of oxygen to the plug.
摘要:
A semiconductor structure is fabricated to have a transistor cell region and a connection region. The transistors both of a transistor cell region and of a connection region are coated with a first oxide layer, the layer thickness of the first oxide layer being dimensioned in such a way that a gap region in each case remains present between the adjacent transistors in the transistor cell region. A sacrificial structure is subsequently applied between at least two adjacent transistors of the transistor cell region in the gap region. At least one gap region in each case remains free between two adjacent sacrificial structures. A second oxide layer is applied to the sacrificial structures and the first oxide layer. The first and second oxide layers are subjected to an etching step in which at least one spacer having a predetermined spacer width is formed on the side edges of at least one transistor of the connection region, the spacer being formed by the first and second oxide layers and the spacer width being determined by the layer thickness of the first and second oxide layers and also by the etching step.
摘要:
The invention provides a simple method of treating a structured surface comprising a higher surface in a first region and a lower surface in the second region. A plurality of layers is deposited on said surface wherein a lower layer exhibits a higher polishing rate than an upper layer and wherein the thickness of the plurality of layers exceeds the step height. Afterwards the plurality of layers is chemically mechanically polished such that the lower layer is at least partly removed in the first region. By this method achieves a better planarisation. Additionally, smaller top contact openings after a wet clean step are achievable and a deformation of contact openings due to annealing steps is reduced.
摘要:
The invention relates to a method for the production of an integrated circuit, comprising the following steps: a substrate (1) is provided with at least one first, second and third gate stack (GS1, GS2, GS3) of approximately the same height surface of said substrate, a common active area (60) being provided on the surface of the substrate in said substrate (1) between the first and second gate stack (GS1, GS2); a first insulating layer (70) is provided in order to cover the embedding of the first second and third gate stack (GS1, GS2, GS3); the upper side of a gate connection (20) of the third gate stack (GS3) is uncovered; a second insulating layer (80) is provided in order to cover the upper side of a gate connection (20); a mask (M2) is provided on the resulting structure having a first opening (12a) above the uncovered upper side of the gate connection (20) of the third gate stack (GS3), a second opening (F2b) above the substrate (1) between the third and second gate stack (GS3, GS2) and a third opening (F2c) above the common active area (60), partially overlapping the first and second gate stack (GS1, GS2), and simultaneously forming a first, second and third contact hole (KB, KS, KG) using said mask (32) in an etching process, the first contact hole (KB) uncovering the common active area (60) on the surface of the substrate between the first and second gate stack (GS1, GS2), the second contact hole (KS) uncovering the surface of the substrate between the second and third gate stack (GS2, GS2) and the third contact hole (KG) uncovering the upper side of the gate connection (20) of the third gate stack (GS3).
摘要:
The invention provides a simple method of treating a structured surface comprising a higher surface in a first region and a lower surface in the second region. A plurality of layers is deposited on said surface wherein a lower layer exhibits a higher polishing rate than an upper layer and wherein the thickness of the plurality of layers exceeds the step height. Afterwards the plurality of layers is chemically mechanically polished such that the lower layer is at least partly removed in the first region. By this method achieves a better planarization. Additionally, smaller top contact openings after a wet clean step are achievable and a deformation of contact openings due to annealing steps is reduced.