Abstract:
Aspects of the present disclosure provide an automated labeling system. For example, the automated labeling system can include an automated labeling module (ALM) configured to receive wireless signals and ground truth of learning object and label the wireless signals with the ground truth when receiving the ground truth to generate labeled training data. The automated labeling system can also include a training database coupled to the ALM. The training database can be configured to store the labeled training data.
Abstract:
A sensor hub coupled to one or more sensors and an application processor of a communications apparatus includes a sensing module and a micro-processor. The sensing module receives raw data from the sensors. The raw data is generated by the sensors when sensing one or more events. The micro-processor constructs an adaptive model according to a plurality of parameters and identifies user activity according to the raw data based on the adaptive model. The sensor hub is an always-on sub-system for assisting the application processor to identify user activity according to the raw data. The micro-processor further receives updated parameters and updates the adaptive model according to the updated parameters.
Abstract:
A power-saving method and associated electronic device are provided. The electronic device is connected with a first external electronic device and a second external electronic device, and a first sensor and a second sensor are deployed on the first external electronic device and the second electronic device, respectively. The electronic device includes: a third sensor, and a processor, wherein the first, second, and third sensors have the same type. The processor gathers information from the first pedometer sensor, the second pedometer sensor, the first external electronic device, and the second external electronic device, and determines whether to turn off at least one of the first, second, and third pedometer sensors according to the information gathered.
Abstract:
A method for accessing a network in an electronic system and associated portable device are provided. The portable device includes; a transceiver, supporting a plurality of predetermined communication protocols; and a processor, configured to connect the portable device to a connectivity service device in an electronic system via the transceiver when the portable device enters a coverage region of the connectivity service device. The connectivity service device retrieves service information from a plurality of electronic devices that are connected to the connectivity service device, to build a service list. The processor retrieves the service list from the connectivity service device, and determines a service from the service list to be used for communicating with the plurality of the electronic devices.
Abstract:
A dynamic data distribution method in a private network and an associated electronic device are provided. The private network includes: a first pairing connection between a first electronic device, a second electronic device, and a second pairing connection between the first electronic device and a third electronic device. The method includes the steps of: receiving sensor data from the second electronic device by the first electronic device; notifying the second electronic device to build a third pairing connection with the third electronic device according to a determination result between the first electronic device and the third electronic device; and terminating the first pairing connection and retrieving the sensor data from the second electronic device through the third electronic device by the first electronic device when the third pairing connection has been built.