Abstract:
An implantable medical device comprising a signal generator configured to generate and deliver anti-tachyarrhythmia pacing (ATP) to a heart of a patient and processing circuitry. The processing circuitry is configured to detect an enable event, responsive to detecting the enable event, enable the delivery of ATP by the signal generator, detect a disable event indicating that another implantable medical device cannot be relied upon to deliver an anti-tachyarrhythmia shock, and responsive to detecting the disable event, disable delivery of ATP.
Abstract:
An implantable medical device comprises a communication module that comprises at least one of a receiver module and a transmitter module. The receiver module is configured to both receive from an antenna and demodulate an RF telemetry signal, and receive from a plurality of electrodes and demodulate a tissue conduction communication (TCC) signal. The transmitter module is configured to modulate and transmit both an RF telemetry signal via the antenna and a TCC signal via the plurality of electrodes. The RF telemetry signal and the TCC signal are both within a predetermined band for RF telemetry communication. In some examples, the IMD comprises a switching module configured to selectively couple one of the plurality of electrodes and the antenna to the receiver module or transmitter module.
Abstract:
This disclosure provides an extravascular ICD system and method for defibrillating a heart of a patient. The extravascular ICD system includes multiple extravascular electrical stimulation leads or lead segments located in close proximity to one another and having respective defibrillation electrodes. The ICD system utilizes the multiple defibrillation electrodes to form an extravascular electrode vector that may result a reduction in the shock impedance and/or a reduction in the DFT compared to extravascular ICD systems that include only a single extravascular defibrillation electrode. An ICD of the system may, for example, deliver a defibrillation shock using an electrode vector in which a first polarity of the electrode vector is formed by electrically coupling first and second defibrillation electrodes of first and second leads, respectively, to the therapy circuitry and a second polarity of the electrode vector is formed by electrically coupling a housing of the ICD to the therapy circuitry.
Abstract:
A medical device system including a pacemaker implantable in an atrial chamber of a patient's heart is configured to sense near field atrial events from a cardiac signal received by a sensing module of the pacemaker and to sense far field ventricular events. The pacemaker is configured to establish an atrial lower rate interval to control a rate of delivery of atrial pacing pulses, determine a rate of the far field ventricular events sensed by the sensing module, determine an atrial event rate, compare the rate of the sensed far field ventricular events to the atrial event rate, and adjust the atrial lower rate interval in response to the comparison.
Abstract:
A method for implanting a medical lead. The method includes advancing a tunneling tool posteriorly proximate the caudal end of the sternum toward a first location. The tunneling tool is advanced superiorly underneath the sternum through the anterior mediastinum from the first location to a second location cranial to the first location. A guidewire is advanced from the first location to the second location. A medical lead is slid along at least a portion of the guidewire, the medical lead at least substantially spanning the distance between the first location and the second location.
Abstract:
An implantable cardioverter defibrillator (ICD) configured to transmit a tissue conduction communication (TCC) signal includes a TCC transmitter module configured to generate the TCC signal and transmit the TCC signal via a plurality of electrodes. The TCC signal comprises a biphasic signal having an amplitude and a frequency, wherein at least one of the amplitude and the frequency are configured to avoid stimulation of tissue of the patient. The TCC transmitter module comprises protection circuitry coupled between a current source and the plurality of electrodes, wherein the protection circuitry is configured to protect the signal generator from an external anti-tachyarrhythmia shock delivered to the patient.
Abstract:
An implantable medical device comprises a communication module that comprises at least one of a receiver module and a transmitter module. The receiver module is configured to both receive from an antenna and demodulate an RF telemetry signal, and receive from a plurality of electrodes and demodulate a tissue conduction communication (TCC) signal. The transmitter module is configured to modulate and transmit both an RF telemetry signal via the antenna and a TCC signal via the plurality of electrodes. The RF telemetry signal and the TCC signal are both within a predetermined band for RF telemetry communication. In some examples, the IMD comprises a switching module configured to selectively couple one of the plurality of electrodes and the antenna to the receiver module or transmitter module.
Abstract:
A medical device system including an pacemaker implantable in a chamber of a patient's heart is configured to sense near field events from a cardiac electrical signal, establish a lower rate interval to control a rate of delivery of pacing pulses and schedule a first pacing pulse by starting a pacing escape interval set equal to the lower rate interval. The pacemaker withholds the scheduled pacing pulse in response to sensing a near-field event during the pacing escape interval and schedules a next pacing pulse to be delivered at the lower rate interval from a time that the pacing escape interval is scheduled to expire.
Abstract:
A method and device for implanting a medical lead. The device includes an elongate shaft defining a major longitudinal axis and including a proximal end and a distal end. A necked portion coupled to and extending from the distal end is included, the necked portion defines a first thickness and a substantially planar surface, the necked portion being at least resiliently movable in a direction normal to the major longitudinal axis. A tip disposed at the distal end of the necked portion is included, the tip defining a second thickness greater than the first thickness