Abstract:
Methods and systems for positioning a leadless pacing device (LPD) in cardiac tissue are disclosed. A delivery device is employed that comprises a proximal end, a distal end and a lumen therebetween sized to receive the LPD. The LPD has a leadlet extending therefrom that includes a means to fixate the leadlet to tissue. The delivery device comprises an introducer to introduce the LPD into the lumen of the delivery device. The LPD is loaded in the distal end of the lumen of the delivery device. The leadlet extends proximally from the LPD while the fixation means extends distally toward the LPD. A LPD mover is configured to advance the LPD out of the delivery device. A leadlet mover is configured to advance the leadlet out of the lumen delivery device and cause the leadlet to engage with cardiac tissue.
Abstract:
Medical devices including a balloon and methods of making medical devices including a balloon are provided. The medical device includes a tubular element, a balloon, and a barrier between the tubular element and the balloon. When air is pushed into one end of the medical device, the balloon may be inflated. The method includes applying a barrier to a tubular element, applying an elastomer solution to the barrier and at least a part of the tubular element to form a coating, and curing the coating to form the balloon.
Abstract:
Medical devices including a balloon-actuated sheath are provided. The medical devices include a tubular body, a tooltip, a balloon, and a tubular sheath translatably coupled to the balloon. Medical devices including a balloon-actuated distal cap are provided. The medical devices include a tubular body, a tooltip, a balloon, and a distal cap translatably coupled to the balloon. When air is pushed into one end of the medical device, the balloon may inflate, translating the tubular sheath or distal cap along a longitudinal axis from a retracted position to an extended position. When in the extended position, the tubular sheath at least partially surrounds the tooltip. When in the extended position, the distal cap at least partially opens fluid communication between the tooltip and the environment.
Abstract:
A bore plug for an implantable medical device. The bore plug includes an elongate body having a proximal portion, a distal portion, and defining a major longitudinal axis therethrough, the distal portion being sized and configured to be received within a bore of the implantable medical device. The distal portion includes a lubricating element configured to lubricate the bore when the distal portion is at least one from the group consisting of inserted within and withdrawn from the bore.
Abstract:
A header for a controller for an implantable medical device. The header includes at least one bore sized and configured to receive a corresponding connector for the implantable medical device. At least one elongate thermally conducting element is disposed within the header and proximate the at least one bore, the at least one elongate thermally conducting element being configured to conduct heat away from the at least one bore and spread heat within the header when the corresponding connector is received within the at least one bore and is communication with the implantable medical device.
Abstract:
Methods and systems for positioning a leadless pacing device (LPD) in cardiac tissue are disclosed. A delivery device is employed that comprises a proximal end, a distal end and a lumen therebetween sized to receive the LPD. The LPD has a leadlet extending therefrom that includes a means to fixate the leadlet to tissue. The delivery device comprises an introducer to introduce the LPD into the lumen of the delivery device. The LPD is loaded in the distal end of the lumen of the delivery device. The leadlet extends proximally from the LPD while the fixation means extends distally toward the LPD. A LPD mover is configured to advance the LPD out of the delivery device. A leadlet mover is configured to advance the leadlet out of the lumen delivery device and cause the leadlet to engage with cardiac tissue.
Abstract:
This disclosure provides various embodiments of implant tools and implant techniques utilizing those tools. In one embodiment, an implant tool comprises a handle and a shaft. The shaft includes a proximal end adjacent the handle, a distal end, an open channel that extends from near the proximal end to the distal end, and at least one lumen that extends from a proximal end of the shaft to a location near the distal end of the shaft. The implant tool may also include a coupler configured to connect to a fluid delivery device. In one example, the fluid delivery device may be a syringe. In some instances, the handle of the implant tool may include a compartment or a recess configured to receive the fluid delivery device.
Abstract:
Methods and systems of making a medical electrical lead type having a set of tines. A system for implantation of a lead medical electrical lead in contact with heart tissue, comprises an elongated lead body; a set of curved tines mounted to and extending from a distal end of the lead body, the tines having a length (dD) and an effective cross sectional area, and a delivery catheter. The delivery catheter encloses the lead body and has a distal capsule portion enclosing the tines. The tines exerting a spring force against the capsule and provide a stored potential energy. The delivery catheter has an elastic, not stiff and low column strength ejection means for advancing the lead and tines distally from the capsule and fixating the tines within the heart tissue, the controllable and the stored potential energy of the tines together provide a deployment energy. The tines when so fixated in the tissue provide a fixation energy. The deployment energy and the fixation energy of the tines are equivalent.
Abstract:
An implantable medical therapy delivery device includes a non-conductive filament extending along a length of an outer surface of an insulative body of the device, wherein the filament includes a plurality of fixation projections and is secured to the outer surface of the insulative body such that the projections protrude outward from the outer surface and are spaced apart from one another along the length of the outer surface. The filament may be wound about the length with an open pitch. In some cases, the insulative body includes an open-work member forming at least a portion of the outer surface thereof, and the filament may be interlaced with the open-work member. In these cases, the filament may be bioabsorbable, for example, to provide only acute fixation via the projections thereof, while the open-work member provides a structure for tissue ingrowth and, thus, more permanent or chronic fixation.
Abstract:
A connector assembly of an implantable medical electrical lead includes insulation and conductor segments, which may be formed together in a molded subassembly. The insulation segment includes at least one sealing surface, and the conductor segment includes at least one contact surface and a shank electrically common therewith. The shank has a smaller diameter than a uniform outer diameter of the assembly, which is defined by the sealing and contact surfaces, and the smaller diameter is sized to receive a coiled proximal end of a lead conductor mounted thereabout. The connector assembly may include another conductor segment that has a third contact surface, active or inactive, extending between third and fourth sealing surfaces of another insulation segment of the assembly; if active, a distal shank of the segment is electrically common with the third contact surface, and sized to receive a coiled proximal end of another lead conductor mounted thereabout.