摘要:
A method and apparatus for combining raw fibrous and binding materials in a single mixing step (Step S3), followed by consolidation (Step S5) so as to greatly shorten the overall cycle time to a finished fiber-reinforced composite part. Chopped fibrous materials and binder materials are deposited sequentially onto a belt conveyor (Step S2) so that the materials are successively layered, one on top of each other in a predetermined ratio, and subsequently mixed (Step S3) to achieve uniform dispersion throughout. The mixed materials are then deposited into a rotating mold (Step S4) to further ensure uniform dispersion of fibrous and binder materials. Impregnation of the fibrous materials with the binder material occur in-situ as the uniformly mixed materials are heated and subsequently compacted in the mold (Step S5) to obtain the desired shape of the fiber-reinforced composite part.
摘要:
A method and apparatus for combining raw fibrous and binding materials in a single mixing step (Step S3), followed by consolidation (Step S5) so as to greatly shorten the overall cycle time to a finished fiber-reinforced composite part. Chopped fibrous materials and binder materials are deposited sequentially onto a belt conveyor (Step S2) so that the materials are successively layered, one on top of each other in a predetermined ratio, and subsequently mixed (Step S3) to achieve uniform dispersion throughout. The mixed materials are then deposited into a rotating mold (Step S4) to further ensure uniform dispersion of fibrous and binder materials. Impregnation of the fibrous materials with the binder material occur in-situ as the uniformly mixed materials are heated and subsequently compacted in the mold (Step S5) to obtain the desired shape of the fiber-reinforced composite part.
摘要:
Methods and apparatuses for combining raw fibrous and binding materials in single mixing step (Step S3), followed by consolidation (Step S5) to greatly shorten overall cycle time to finished fiber-reinforced composite part. Chopped fibrous materials and binder materials are deposited sequentially onto belt conveyor (Step S2) so that materials are successively layered on top of one another in predetermined ratio and subsequently mixed (Step S3) to achieve uniform dispersion throughout. Mixed materials are deposited into rotating mold (Step S4), which further ensures uniform dispersion of fibrous and binder materials. Impregnation of fibrous materials with the binder material occurs in situ as uniformly mixed materials are heated and subsequently compacted in mold (Step S5) to obtain desired shape of fiber-reinforced composite part. Rotation device including: turntable for rotating mold; and actuator for supporting turntable and providing reciprocating motion to mold.
摘要:
A method and apparatus for combining raw fibrous and binding materials in a single mixing step (Step S3), followed by consolidation (Step S5) so as to greatly shorten the overall cycle time to a finished fiber-reinforced composite part. Chopped fibrous materials and binder materials are deposited sequentially onto a belt conveyor (Step S2) so that the materials are successively layered, one on top of each other in a predetermined ratio, and subsequently mixed (Step S3) to achieve uniform dispersion throughout. The mixed materials are then deposited into a rotating mold (Step S4) to further ensure uniform dispersion of fibrous and binder materials. Impregnation of the fibrous materials with the binder material occur in-situ as the uniformly mixed materials are heated and subsequently compacted in the mold (Step S5) to obtain the desired shape of the fiber-reinforced composite part.
摘要:
A resin transfer molding (RTM) process is disclosed for rapidly filling a fibrous preform and/or a rigid, porous body with high viscosity resin or pitch. The process is suitable for impregnated multiple porous bodies stacked in a single mold. The process uses a fibrous preform or rigid porous body which is placed into a mold matching the desired part geometry. A resin is injected into the mold at temperature and pressure. After cooling, the infiltrated component is removed from the mold. The mold is constructed from two halves fitted to form at least one mold cavity. A gate fitted with a nozzle is set into one of the mold halves, and a valve admits resin or pitch into the gate area. Venting or vacuum can be applied to the mold. The mold is held in a hydraulic press and an extruder, optionally fitted with an accumulator, supplies molten resin or pitch to the mold.
摘要:
A resin transfer molding (RTM) process is disclosed for rapidly filling a fibrous preform and/or a rigid, porous body with high viscosity resin or pitch. The process is suitable for impregnated multiple porous bodies stacked in a single mold. The process uses a fibrous preform or rigid porous body which is placed into a mold matching the desired part geometry. A resin is injected into the mold at temperature and pressure. After cooling, the infiltrated component is removed from the mold. The mold is constructed from two halves fitted to form at least one mold cavity. A gate fitted with a nozzle is set into one of the mold halves, and a valve admits resin or pitch into the gate area. Venting or vacuum can be applied to the mold. The mold is held in a hydraulic press and an extruder, optionally fitted with an accumulator, supplies molten resin or pitch to the mold.
摘要:
A pitch densification apparatus may be used to form a carbon-carbon composite material. The apparatus may be used to compress a carbon fiber material, and, thereafter, pitch densify the carbon fiber material. The compression and pitch densification of the carbon fiber material may be carried out within the same mold cavity of the pitch densification apparatus. In one example, an apparatus may comprise a mold defining a mold cavity that is configured to receive a material to be densified. The mold cavity is configured to be adjusted from a first volume to a second volume less than the first volume to compress the material in the mold cavity. The example apparatus may further comprise a gas source configured to apply a gas pressure in the mold cavity to force pitch into the material in the mold cavity to densify the material, and a vacuum source configured to create a vacuum pressure in the mold cavity at least prior to the application of the gas pressure.
摘要:
This invention relates to an improved carbon-carbon composite material and method of preparation. The carbon-carbon composite material comprises a plurality of carbon fiber substrates that have been joined or consolidated. In the present invention, the carbon fibers are stressed during the preparation of the composite material. The invention comprises adding a low-melting point pitch to the carbon fiber substrates and heat treating the carbon fiber substrates. The fibers tend to shrink more than the pitch during heat-treatment which produces stress in the fibers. This invention enhances the strength of the composite material and improves reliability.
摘要:
Molding apparatus for rapid transfer of molten resin or pitch in an infiltration molding process. The apparatus includes e.g. an extruder (4) for melting and conveying a resin or pitch and a mold (10) arranged so that resin or pitch is conveyed to a mold insert cavity (19) within the mold. The mold insert contains an internal protrusion such as a locating ring (25) for positioning a porous body (1, 18) within the mold insert cavity in a position that brings about unidirectional flow of the molten resin or pitch through the porous body. Also, rapid resin or pitch infiltration molding process that includes injecting a high melting point, high viscosity, molten resin or pitch into the mold to effect a unidirectional impregnation of a heated preform via a pressure gradient in the mold.
摘要:
A brake disk (10) includes an annular core (12, 60, 82) formed from a plurality of non-annular pieces (40, 66, 68, 84), a first friction disk (14) mounted on a first side of the annular core (12, 60, 82), a second friction disk (14) mounted on a second side of the core (12, 60, 82) opposite from the first friction disk (14), and at least one fastener (58) connecting the first and second friction disks (14, 14) to the core (12, 60, 82). Also a method of assembling a brake disk from a core and friction elements.