摘要:
A compact optical arrangement for transfer of large field of view images to the pupil of a viewer, said optical arrangement including a cooperative collimator/combiner and ball lens, wherein the ball lens is positioned at the location of the image of said pupil formed by said collimator/combiner.
摘要:
A compact zoom lens system having four injection-molded singlet lens elements is described. In one embodiment, the compact zoom lens system includes a lens carrier and first and second lens elements coupled to the lens carrier. One surface of the first or second lens elements having a diffractive optical surface disposed thereon to correct chromatic aberrations of light passing therethrough. The lens carrier moves the first and second lens elements axially to change a focal length of the lens system. Third and fourth lens elements are fixed on either side of the first and second lens elements. The lens carrier includes an aperture stop placed proximate to the diffractive optical surface to correct chromatic aberrations over an entire range of focal lengths. The first lens element is made out of flint-like material while the other lens elements are made out of crown-like material. Moreover, the zoom lens system includes an anti-aliasing surface on one of the lens elements to control aliasing effects. A plurality of light suppression elements are provided to suppress stray light paths from scattering across a detector array of the zoom lens system.
摘要:
An ophthalmic lens system (11), including an IOL (15) having a negative IOL lens portion (22) and a positive lens (13) adapted to be outside the eye and direct light toward the negative IOL lens portion. At least one of the surfaces of at least one of the lenses has a diffractive portion.
摘要:
A compact zoom lens system having four injection-molded singlet lens elements is described. In one embodiment, the compact zoom lens system includes a lens carrier and first and second lens elements coupled to the lens carrier. One surface of the first or second lens elements having a diffractive optical surface disposed thereon to correct chromatic aberrations of light passing therethrough. The lens carrier moves the first and second lens elements axially to change a focal length of the lens system. Third and fourth lens elements are fixed on either side of the first and second lens elements. The lens carrier includes an aperture stop placed proximate to the diffractive optical surface to correct chromatic aberrations over an entire range of focal lengths. The first lens element is made out of flint-like material while the other lens elements are made out of crown-like material. Moreover, the zoom lens system includes an anti-aliasing surface on one of the lens elements to control aliasing effects. A plurality of light suppression elements are provided to suppress stray light paths from scattering across a detector array of the zoom lens system.
摘要:
Disclosed is a way of enhancing capabilities of an interface, such as a communications bus (100), while retaining backwards compatibility of the interface. The bus has a plurality of signal lines (250) including critical control signal lines. Legacy devices (102-103) present a legacy interface to each other over the bus by communicating with each other via a legacy protocol (251) over the bus. Critical control signals of the legacy protocol are conveyed by the critical control signal lines. New devices (104-105) present an enhanced interface to each other over the same bus by communicating with each other via an enhanced protocol (252) over the bus. Control signals of the enhanced protocol are conveyed by signal lines other than the critical control signal lines for the legacy protocol, so that the critical control signal lines remain idle or invalid for the legacy protocol. The new devices signal to each other an intent to use the enhanced protocol by sending a signal on a signal line (253) that is not used by the legacy protocol. The new devices preferably can communicate on the bus via either protocol, and thus can communicate not only with each other but also with the legacy devices.
摘要:
An active-standby dual processor (100) performs only selective memory duplication and does so via hardware (114, 117, 118) and the operating system (109). A page table (217) stores a shadowing flag (203) for each memory page of the active memory (116) of the processor (101) that indicates whether or not the corresponding page is shadowed. When the operating system allocates (302, 402) memory to a process—either statically at creation of the process or dynamically during execution of the process—it checks (304, 404) whether the process program's data statement indicates shadowing or whether the MALLOC request includes a segment selector that indicates shadowing; if so, it sets (306, 406) the allocated page's shadowing flag. When the active processor performs (600, 602) a write of its memory, a page table controller (117) checks (500-508) if the written page's shadowing flag is set. If so, an interprocessor interface (118) is caused (510, 604-606) to replicate the write on the standby processor's memory; if not, the write is not replicated.
摘要:
An illumination source or condenser used to project the image of a reticle onto a photosensitive substrate used in photolithography having a first reflective fly's eye, faceted mirror, or mirror array with predeterminedly positioned facets or elements and a second reflective fly's eye, faceted mirror, or mirror array having predeterminedly positioned facets or elements for creating a desired radiant intensity, pupil fill, or angular distribution. A source of extreme ultraviolet electromagnetic radiation is provided to a first fly's eye or mirror array with arcuate shaped facets or elements. The arcuate shaped facets or elements are positioned to create an image of the source at corresponding facet in a second reflective fly's eye or mirror array. A desired shape and irradiance together with a desired radiant intensity, pupil fill, or angular distribution is obtained. An arcuate illumination field or image is formed with high efficiency in a compact package. The illumination system of the present invention facilitates imaging of feature sizes as small as 0.025 microns, utilizing electromagnetic radiation in the extreme ultraviolet and ranging from 1 nanometer to approximately 157 nanometers.