Abstract:
Systems and methods for releasing semiconductor devices during pick and place operations are disclosed. A representative system for handling semiconductor dies comprises a support member positioned to carry at least one semiconductor die releasably attached to a support substrate. The system further includes a picking device having a pick head coupleable to a vacuum source and positioned to releasably attach to the semiconductor die at a pick station. The system still further incudes a release station having a fluid delivery device coupleable to a source of release fluid, the fluid delivery device having an exit positioned to direct release fluid toward a semiconductor die carried by the support member at the release station.
Abstract:
A method of forming a plurality of semiconductor devices includes applying a tape material to a back side of a semiconductor device having a silicon layer on the back side and a circuitry layer on the front side, lasing with an infrared laser the silicon layer through the tape material, lasing with a second laser the circuitry layer, and expanding the tape material for form a plurality of semiconductor devices. The second layer may be an ultraviolet laser. The lasers may be irradiated in a pattern on the bottom side and the top side. The second layer may form a groove in the circuitry layer that does not penetrate the silicon layer. The infrared laser may cleave a portion of the silicon lattice of the silicon layer. A coating may be applied to the circuitry layer prior to being irradiated with the second laser.
Abstract:
Systems and methods for releasing semiconductor devices during pick and place operations are disclosed. A representative system for handling semiconductor dies comprises a support member positioned to carry at least one semiconductor die releasably attached to a support substrate. The system further includes a picking device having a pick head coupleable to a vacuum source and positioned to releasably attach to the semiconductor die at a pick station. The system still further incudes a release station having a fluid delivery device coupleable to a source of release fluid, the fluid delivery device having an exit positioned to direct release fluid toward a semiconductor die carried by the support member at the release station.
Abstract:
Systems and methods for releasing semiconductor devices during pick and place operations are disclosed. A representative system for handling semiconductor dies comprises a support member positioned to carry at least one semiconductor die releasably attached to a support substrate. The system further includes a picking device having a pick head coupleable to a vacuum source and positioned to releasably attach to the semiconductor die at a pick station. The system still further includes a release station having a fluid delivery device coupleable to a source of release fluid, the fluid delivery device having an exit positioned to direct release fluid toward a semiconductor die carried by the support member at the release station.
Abstract:
Heat spreaders for dissipating heat from semiconductor devices comprise a contact surface located within a recess on an underside of the heat spreader, the contact surface being configured to physically and thermally attach to a semiconductor device, and a trench extending into the heat spreader adjacent to the contact surface sized and configured to receive underfill material extending from the semiconductor device into the trench. Related semiconductor device assemblies may include these heat spreaders and methods may include physically and thermally attaching these heat spreaders to semiconductor devices such that underfill material extends from a semiconductor device into the trench.
Abstract:
Systems and methods for releasing semiconductor devices during pick and place operations are disclosed. A representative system for handling semiconductor dies comprises a support member positioned to carry at least one semiconductor die releasably attached to a support substrate. The system further includes a picking device having a pick head coupleable to a vacuum source and positioned to releasably attach to the semiconductor die at a pick station. The system still further includes a release station having a fluid delivery device coupleable to a source of release fluid, the fluid delivery device having an exit positioned to direct release fluid toward a semiconductor die carried by the support member at the release station.
Abstract:
A method of forming a plurality of semiconductor devices includes applying a tape material to a back side of a semiconductor device having a silicon layer on the back side and a circuitry layer on the front side, lasing with an infrared laser the silicon layer through the tape material, lasing with a second laser the circuitry layer, and expanding the tape material for form a plurality of semiconductor devices. The second layer may be an ultraviolet laser. The lasers may be irradiated in a pattern on the bottom side and the top side. The second layer may form a groove in the circuitry layer that does not penetrate the silicon layer. The infrared laser may cleave a portion of the silicon lattice of the silicon layer. A coating may be applied to the circuitry layer prior to being irradiated with the second laser.
Abstract:
Systems and methods for releasing semiconductor devices during pick and place operations are disclosed. A representative system for handling semiconductor dies comprises a support member positioned to carry at least one semiconductor die releasably attached to a support substrate. The system further includes a picking device having a pick head coupleable to a vacuum source and positioned to releasably attach to the semiconductor die at a pick station. The system still further includes a release station having a fluid delivery device coupleable to a source of release fluid, the fluid delivery device having an exit positioned to direct release fluid toward a semiconductor die carried by the support member at the release station.
Abstract:
Systems and methods for releasing semiconductor devices during pick and place operations are disclosed. A representative system for handling semiconductor dies comprises a support member positioned to carry at least one semiconductor die releasably attached to a support substrate. The system further includes a picking device having a pick head coupleable to a vacuum source and positioned to releasably attach to the semiconductor die at a pick station. The system still further includes a release station having a fluid delivery device coupleable to a source of release fluid, the fluid delivery device having an exit positioned to direct release fluid toward a semiconductor die carried by the support member at the release station.
Abstract:
A method of forming a plurality of semiconductor devices includes applying a tape material to a back side of a semiconductor device having a silicon layer on the back side and a circuitry layer on the front side, lasing with an infrared laser the silicon layer through the tape material, lasing with a second laser the circuitry layer, and expanding the tape material for form a plurality of semiconductor devices. The second layer may be an ultraviolet laser. The lasers may be irradiated in a pattern on the bottom side and the top side. The second layer may form a groove in the circuitry layer that does not penetrate the silicon layer. The infrared laser may cleave a portion of the silicon lattice of the silicon layer. A coating may be applied to the circuitry layer prior to being irradiated with the second laser.