摘要:
In an optical component configured to fix to a mount an optical device chip in which waveguide type optical devices having different thermal expansion coefficients are butt-jointed, deterioration in reliability due to thermal stress is suppressed. The optical component (300) comprises an optical device chip (310) including an LN waveguide (311), a first PLC waveguide (312), a second PLC waveguide (313), and a fiber alignment member (314), a mount (320), and optical fibers (330). Each of connection faces between the first PLC waveguide and the fiber alignment member is configured as an tilted structure, and each of connection faces between the LN waveguide, and the first and second PLC waveguides is configured as a right-angled structure. In the right-angled structure, the connection faces are connected by an adhesive having a lower Young's modulus than that of an adhesive used on the connection faces of the tilted structure.
摘要:
In an optical component configured to fix to a mount an optical device chip in which a plurality of waveguide type optical devices having different thermal expansion coefficients are butt-jointed, deterioration in reliability due to thermal stress is suppressed. The optical component (300) comprises an optical device chip (310) including an LN waveguide (311), a first PLC waveguide (312) connected to an end of the LN waveguide (311), a second PLC waveguide (313) connected to the other end of the LN waveguide (311), and a fiber alignment member (314) connected to the first PLC waveguide (312), a mount (320) on which the optical device chip (310) is mounted, and optical fibers (330) aligned to the fiber alignment member (314). Each of connection faces between the first PLC waveguide (312) and the fiber alignment member (314) is configured as an tilted structure, and each of connection faces between the LN waveguide (311), and the first and second PLC waveguides (312, 313) is configured as a right-angled structure. In the right-angled structure, the connection faces are connected by an adhesive having a lower Young's modulus than that of an adhesive used on the connection faces of the tilted structure.
摘要:
In a nest MZI modulator in which each arm includes a child MZI, the power consumption is reduced. The hybrid integrated-type nest MZI modulator of the embodiment 1a is configured so that, instead of placing a relative phase adjusting section in a parent MZI, a bias electrode Bias 90° in which an electric field is applied in the same direction to the polarization direction in both of the upper and lower arms is placed in each child MZI (see FIG. 4B). The bias electrode Bias 90° provided in each child MZI constitute the entirety of a relative phase adjusting section. The optical signals are subjected to a phase change after the output from the child MZI (see FIG. 1A), because such relative phase adjusting section can subject the optical signals of the upper and lower arms of the child MZI to a shift change in the same direction, respectively.
摘要:
In a nest MZI modulator in which each arm includes a child MZI, the power consumption is reduced. The hybrid integrated-type nest MZI modulator of the embodiment 1a is configured so that, instead of placing a relative phase adjusting section in a parent MZI, a bias electrode Bias 90° in which an electric field is applied in the same direction to the polarization direction in both of the upper and lower arms is placed in each child MZI (see FIG. 4B). The bias electrode Bias 90° provided in each child MZI constitute the entirety of a relative phase adjusting section. The optical signals are subjected to a phase change after the output from the child MZI (see FIG. 1A), because such relative phase adjusting section can subject the optical signals of the upper and lower arms of the child MZI to a shift change in the same direction, respectively.
摘要:
An object of the present invention is to provide a temperature-independent optical frequency shifter for generating sub-carriers with a miniaturizable configuration, as well as to provide an all-optical OFDM modulator using the same that is compact, has low temperature dependence, and is even compatible with different frequency grids. Provided is an optical frequency shifter and an optical modulator using the same, the optical frequency shifter comprises one input optical port, a 1-input, 2-output optical coupler optically connected thereto, two Mach-Zehnder modulation units individually optically connected to the two outputs thereof, a 2-input, 2-output optical coupler optically connected to the individual outputs thereof, and two output optical ports optically connected to the outputs thereof, wherein the two Mach-Zehnder modulation units are driven by periodic waveforms at the same frequency whose phases differ from each other by (2p+1)π/2 (p: integer).
摘要:
An object of the present invention is to provide a temperature-independent optical frequency shifter for generating sub-carriers with a miniaturizable configuration, as well as to provide an all-optical OFDM modulator using the same that is compact, has low temperature dependence, and is even compatible with different frequency grids. Provided is an optical frequency shifter and an optical modulator using the same, the optical frequency shifter comprises one input optical port, a 1-input, 2-output optical coupler optically connected thereto, two Mach-Zehnder modulation units individually optically connected to the two outputs thereof, a 2-input, 2-output optical coupler optically connected to the individual outputs thereof, and two output optical ports optically connected to the outputs thereof, wherein the two Mach-Zehnder modulation units are driven by periodic waveforms at the same frequency whose phases differ from each other by (2p+1) π/2 (p: integer).
摘要:
An optical module controls its output characteristics electrically and an optical switch constitutes an optical module. An optical waveguide circuit (PLC) and an electronic circuit (IC) for driving the PLC are mounted on the same substrate. The IC is composed of a bare chip to be molded afterward. Wiring of the IC is grouped and integrated on the PLC substrate to achieve higher density and miniaturization of the optical module.
摘要:
An optical module controls its output characteristics electrically and an optical switch constitutes the optical module. An optical waveguide circuit (PLC) and an electronic circuit (IC) for driving the PLC are mounted on the same substrate. The IC is composed of a bare chip to be molded afterward. Wiring of the IC is grouped and integrated on the PLC substrate to achieve higher density and miniaturization of the optical module.
摘要:
An optical module controls its output characteristics electrically and an optical switch constitutes the optical module. An optical waveguide circuit (PLC) and an electronic circuit (IC) for driving the PLC are mounted on the same substrate. The IC is composed of a bare chip to be molded afterward. Wiring of the IC is grouped and integrated on the PLC substrate to achieve higher density and miniaturization of the optical module.
摘要:
An optical module controls its output characteristics electrically and an optical switch constitutes the optical module. An optical waveguide circuit (PLC) and an electronic circuit (IC) for driving the PLC are mounted on the same substrate. The IC is composed of a bare chip to be molded afterward. Wiring of the IC is grouped and integrated on the PLC substrate to achieve higher density and miniaturization of the optical module.