HYDROCARBON LEAK IMAGING AND QUANTIFICATION SENSOR

    公开(公告)号:US20170336281A1

    公开(公告)日:2017-11-23

    申请号:US15598052

    申请日:2017-05-17

    Abstract: This invention consists of sensors and algorithms to image, detect, and quantify the presence of hydrocarbon gas (for example from leaks) using a short-wave infrared radiation detector array with multiple spectral filters under natural sunlight or artificial illumination, in combination with the hydrodynamics of turbulent gas jets and buoyant plumes. Multiple embodiments are recited and address detection and quantification of methane gas leaks. Quantification includes gas column densities, gas concentration estimates, total mass, hole size estimates, and estimated emission flux (leak rate) of gas from holes and cracks in pressurized vessels, pipes, components, and general gas infrastructure, and from surface patches (for example due to gas leaks in underground pipes) under the action of buoyancy and wind. These and similar embodiments are applicable more generally to natural gas and other hydrocarbon gases, liquids, emulsions, solids, and particulates, and to emissions monitoring of greenhouse gases methane and carbon dioxide.

    Hydrocarbon leak imaging and quantification sensor

    公开(公告)号:US11143572B2

    公开(公告)日:2021-10-12

    申请号:US16183072

    申请日:2018-11-07

    Abstract: This invention consists of sensors and algorithms to image, detect, and quantify the presence of hydrocarbon gas (for example from leaks) using a short-wave infrared radiation detector array with multiple spectral filters under natural sunlight or artificial illumination, in combination with the hydrodynamics of turbulent gas jets and buoyant plumes. Multiple embodiments are recited and address detection and quantification of methane gas leaks. Quantification includes gas column densities, gas concentration estimates, total mass, hole size estimates, and estimated emission flux (leak rate) of gas from holes and cracks in pressurized vessels, pipes, components, and general gas infrastructure, and from surface patches (for example due to gas leaks in underground pipes) under the action of buoyancy and wind. These and similar embodiments are applicable more generally to natural gas and other hydrocarbon gases, liquids, emulsions, solids, and particulates, and to emissions monitoring of greenhouse gases methane and carbon dioxide.

    Scanning IR sensor for gas safety and emissions monitoring

    公开(公告)号:US10436710B2

    公开(公告)日:2019-10-08

    申请号:US16183045

    申请日:2018-11-07

    Abstract: Apparatus and methods for rapidly detecting, localizing, imaging, and quantifying leaks of natural gas and other hydrocarbon and greenhouse gases. Scanning sensors, scan patterns, and data processing algorithms enable monitoring a site to rapidly detect, localize, image, and quantify amounts and rates of hydrocarbon leaks. Multispectral short-wave infrared detectors sense non-thermal infrared radiation from natural solar or artificial illumination sources by differential absorption spectroscopy. A multispectral sensor is scanned to envelop an area of interest, detect the presence and location of a leak, and raster scan the area around the leak to create an image of the leak. The resulting absorption image related to differential spectral optical depth is color mapped to render the degree of gas absorption across the scene. Analysis of this optical depth image, with factors including known inline pressures and/or surface wind speed measurements, enable estimation of the leak rate, i.e., emission mass flux of gas.

    Systems and methods for multispectral imaging and gas detection using a scanning illuminator and optical sensor

    公开(公告)号:US10371627B2

    公开(公告)日:2019-08-06

    申请号:US16129731

    申请日:2018-09-12

    Abstract: Presented herein are systems and methods directed to a multispectral absorption-based imaging approach that provides for rapid and accurate detection, localization, and quantification of gas leaks. The imaging technology described herein utilizes a scanning optical sensor in combination with structured and scannable illumination to detect and image spectral signatures produced by absorption of light by leaking gas in a quantitative manner over wide areas, at distance, and in the presence of background such as ambient gas and vapor. Moreover, the specifically structured and scannable illumination source of the systems and methods described herein provides a consistent source of illumination for the scanning optical sensor, allowing imaging to be performed even in the absence of sufficient natural light, such as sunlight. The imaging approaches described herein can, accordingly, be used for a variety of gas leak detection, emissions monitoring, and safety applications.

    SCANNING IR SENSOR FOR GAS SAFETY AND EMISSIONS MONITORING

    公开(公告)号:US20190137390A1

    公开(公告)日:2019-05-09

    申请号:US16183045

    申请日:2018-11-07

    Abstract: Apparatus and methods for rapidly detecting, localizing, imaging, and quantifying leaks of natural gas and other hydrocarbon and greenhouse gases. Scanning sensors, scan patterns, and data processing algorithms enable monitoring a site to rapidly detect, localize, image, and quantify amounts and rates of hydrocarbon leaks. Multispectral short-wave infrared detectors sense non-thermal infrared radiation from natural solar or artificial illumination sources by differential absorption spectroscopy. A multispectral sensor is scanned to envelop an area of interest, detect the presence and location of a leak, and raster scan the area around the leak to create an image of the leak. The resulting absorption image related to differential spectral optical depth is color mapped to render the degree of gas absorption across the scene. Analysis of this optical depth image, with factors including known inline pressures and/or surface wind speed measurements, enable estimation of the leak rate, i.e., emission mass flux of gas.

    Hydrocarbon leak imaging and quantification sensor

    公开(公告)号:US10197470B2

    公开(公告)日:2019-02-05

    申请号:US15598052

    申请日:2017-05-17

    Abstract: This invention consists of sensors and algorithms to image, detect, and quantify the presence of hydrocarbon gas (for example from leaks) using a short-wave infrared radiation detector array with multiple spectral filters under natural sunlight or artificial illumination, in combination with the hydrodynamics of turbulent gas jets and buoyant plumes. Multiple embodiments are recited and address detection and quantification of methane gas leaks. Quantification includes gas column densities, gas concentration estimates, total mass, hole size estimates, and estimated emission flux (leak rate) of gas from holes and cracks in pressurized vessels, pipes, components, and general gas infrastructure, and from surface patches (for example due to gas leaks in underground pipes) under the action of buoyancy and wind. These and similar embodiments are applicable more generally to natural gas and other hydrocarbon gases, liquids, emulsions, solids, and particulates, and to emissions monitoring of greenhouse gases methane and carbon dioxide.

Patent Agency Ranking