Abstract:
Electrodes having at least one current correcting layer between the current collector and the separator drive electron flow in a direction perpendicular to the X-Y plane. Such an electrode includes a current collector, a first active material layer coated on the current collector, a first current correcting layer on the first active material layer opposite the current collector and a second active material layer on the first current correcting layer opposite the first active material layer. The first current correcting layer is a highly conductive, porous material that is not electrochemically active, the first current correcting layer being uniformly formed along an X-Y plane of the electrode.
Abstract:
A method for preparing a lithium ion battery having improved discharge capacity retention in which, prior to using the lithium ion battery having at least one unit cell, a discharging current is applied to the unit cell in a manner such that the delithiation speed of alloying particles is greater than their volume contraction upon delithiation.
Abstract:
Electrodes incorporate an electrically activated matrix into which active material is provided. The active material includes alloying particles, which, as used herein, are active catalyst particles that have a high lithium storage capacity resulting in large volume expansions during lithiation. The electrically activated matrix is activated during charging and discharging of the battery, and when activated, maintains the electrode structure and stability by expanding and contracting with the volume expansion and contraction of the alloying particles during lithiation and delithiation, respectively. The electrically activated matrix also reduces cracking and pulverization of the alloying particles, maintaining electrical conductivity between active materials, thereby maintaining battery energy density through the life of the battery.
Abstract:
A method of making an electrode for a lithium ion battery includes providing a restricting media having a main body with opposing planar surfaces and depositing alloying particles on the opposing planar surfaces to form a restrained active particle layer. The restricting media can be a magnetic, electrochemically inactive material with an affinity for the alloying particles. The restricting media restrains expansion of the alloying particles during lithiation to a respective side of the restricting media. Electrodes include a current collector and an electrode material layer adjacent the current collector including the restricting media, the alloying particles deposited on the restricting media to form a restrained active particle layer, and a carbon material in contact with the alloying particles
Abstract:
An electrode comprises a current collector and a multi-layer active material formed on the current collector. The multi-layer active material includes at least one active composite unit having a first layer consisting essentially of a first carbon material having electrochemical activity and a binder and a second layer formed on the first layer comprising a high energy density material. A top layer is formed on the active composite unit consisting essentially of a second carbon material having electrochemical activity and a binder. The electrode provides even current distribution and compensates for particle volume expansion.
Abstract:
A method for preparing a lithium ion battery having improved discharge capacity retention in which, prior to using the lithium ion battery having at least one unit cell, a discharging current is applied to the unit cell in a manner such that the delithiation speed of alloying particles is greater than their volume contraction upon delithiation.
Abstract:
Electrodes made with a matrix selectively loaded with particular active particles provide uniform distribution and reduce issues due to particle expansion. The electrode has a current collector, a separator and a matrix having first pores having a first size and second pores having a second size, the first size being larger than the second size, the second pores being uniformly distributed throughout the matrix; first active particles deposited in the first pores, the first active particles having a first particle size smaller than the first pores and larger than the second pores; and second active particles deposited in the second pores, the second active particles having a second particle size smaller than the second pores.
Abstract:
An electrode comprises a current collector, a conductive buffer layer formed on the current collector consisting essentially of carbon and a binder, and an active material layer formed on the buffer layer. Another conductive buffer layer can be formed on an opposing side of the current collector, with the active material formed on this other buffer layer. The active material layer can be either an anode active material layer or a cathode active material layer.