Abstract:
An operational amplifier circuit is provided. The operational amplifier circuit includes a differential input stage circuit and a loading stage circuit. The differential input stage circuit includes a first current source, a first transistor, a second transistor, a third transistor, and a fourth transistor. The control terminal of the first transistor receives a first input signal. The control terminal of the second transistor receives a second input signal. The third transistor has a first terminal coupled to the second terminal of the first transistor, a second terminal coupled to the first current source, and a control terminal coupled to the control terminal of the second transistor. The fourth transistor has a first terminal coupled to the second terminal of the second transistor, a second terminal coupled to the first current source, and a control terminal coupled to the control terminal of the first transistor.
Abstract:
A gate driver, a display apparatus having the same, and a gate driving method are provided. The display apparatus includes a plurality of pixels, a data driver circuit, and a gate driver circuit. The gate driver circuit includes M groups of gate channels. Each of the M groups of gate channels includes a control circuit and an output buffer. The control circuit receives a power supply voltage from a power supply circuit and generates a modulated supply voltage. The output buffer is connected to the control circuit, the output buffer is powered by the modulated supply voltage to output a gate signal to a gate line of the display panel, wherein a driving pulse of the gate signal is shaped during a charge period according to the modulated supply voltage, and the shape of the driving pulse of the gate signal is maintained during a pre-charge period.
Abstract:
A source driver apparatus and an operating method thereof are provided. The source driver apparatus can drive a plurality of source lines of a display panel, wherein the display panel further comprising a gate driver apparatus. The source driver apparatus includes driving channels and a delay control circuit. The driving channels output source driving signals. The delay control circuit controls the driving channels to change delay times of the source driving signals within the same period, such that the delay times of the source driving signals respectively correspond to distances from the source lines to the gate driver apparatus.
Abstract:
A driving device and a source driving method are provided. The driving device includes a first code mapping unit, a first source driving channel, a second code mapping unit and a second source driving channel. The first code mapping unit converts a first input code in input data into a first intermediate code according to a first code-to-code mapping relation. The first source driving channel converts the first intermediate code into a first analog voltage according to a first code-to-voltage mapping relation. The second code mapping unit converts a second input code in the input data into a second intermediate code according to a second code-to-code mapping relation which is different from the first code-to-code mapping relation. The second source driving channel converts the second intermediate code into a second analog voltage according to a second code-to-voltage mapping relation which is different from the first code-to-voltage mapping relation.
Abstract:
A panel display apparatus is provided which includes a timing controller, a plurality of source drivers, a first data path, and a second data path. The first data path and the second data path are both coupled between the timing controller and the source drivers. The timing controller transmits multiple display data to the source drivers via the first data path. When the source drivers detect an event (e.g. error event), the source drivers transmit at least one event data (e.g. notification data) to the timing controller via the second data path to notify the timing controller that event correction (e.g. error correction) is needed.
Abstract:
A display apparatus and a gate driving method thereof are provided. The display apparatus includes a display panel and a gate driver. The display panel has a plurality of gate lines. Output terminals of the gate driver are coupled to the gate lines in a one-to-one manner. The gate driver is configured to drive the gate lines according to a scrambled scan sequence.
Abstract:
A display apparatus and a driving method of the same are provided. The display apparatus includes a display panel, a gate driver circuit, and a source driver circuit. During a functional sub-period of a frame period, the gate driver circuit simultaneously drives a plurality of gate lines, and the source driver circuit drives a plurality of source lines, so as to perform a function on a plurality of pixels connected to the gate lines. In a scan sub-period of the frame period, the gate driver circuit drives the gate lines according to a scan sequence, and the source driver circuit correspondingly drives the source lines according to the scan sequence of the gate driver circuit in the first scan sub-period, so as to display an image.
Abstract:
The present invention discloses an integrated source driver for a liquid crystal display device. The integrated source driver includes a reference voltage generating circuit, for providing a plurality of adjustable voltage ranges within a supply voltage and a ground level, and a reference voltage selecting circuit, including a plurality of digital to analog converters, for selecting and generating a plurality of internal reference voltages from the plurality of adjustable voltage ranges, respectively. The plurality of adjustable voltage ranges decrease progressively.
Abstract:
The present invention discloses an integrated source driver for a liquid crystal display device. The integrated source driver includes a reference voltage generating circuit, for providing a plurality of adjustable voltage ranges within a supply voltage and a ground level, and a reference voltage selecting circuit, including a plurality of digital to analog converters, for selecting and generating a plurality of internal reference voltages from the plurality of adjustable voltage ranges, respectively. The plurality of adjustable voltage ranges decrease progressively.
Abstract:
A self-detection charge sharing module for a liquid crystal display device is disclosed. The self-detection charge sharing module includes at least one detecting unit, for detecting a plurality of input voltages of a plurality of operational amplifiers driving a plurality of data line sand a plurality of output voltage of the plurality of data line, to generate at least one detecting result, and at least one charge sharing unit, for conducting connection between at least one first data line and at least one second data line among the plurality of data line when the at least one detecting result indicates at least one corresponding first input voltage and at least one corresponding second input voltage among the plurality of input voltage have opposite voltage variation direction and vary toward each other. The at least one first input voltage and the at least one second input voltage maintain respective polarities.