Abstract:
Consistent with example embodiments, a wafer substrate undergoes processing in which a resilient material is applied to the front-side and back-side surfaces of the wafer substrate. By defining trenches in saw lanes between active device die, additional resilient material may be placed therein. In an example embodiment, after the active device die are separated into individual product devices, the resulting product device has coverage on the front-side surface, back-side surface, and the four vertical faces of the encapsulated active device die. The front-side surface has exposed contact areas so that the product device may be attached to an end user's system circuit board. Further, the resilient coating protects the encapsulated active device die from damage during assembly.
Abstract:
Consistent with example embodiments, a wafer substrate undergoes processing in which a resilient material is applied to the front-side and back-side surfaces of the wafer substrate. By defining trenches in saw lanes between active device die, additional resilient material may be placed therein. In an example embodiment, after the active device die are separated into individual product devices, the resulting product device has coverage on the front-side surface, back-side surface, and the four vertical faces of the encapsulated active device die. The front-side surface has exposed contact areas so that the product device may be attached to an end user's system circuit board. Further, the resilient coating protects the encapsulated active device die from damage during assembly.
Abstract:
A method of making a plurality of packaged semiconductor devices. The method includes providing a carrier blank having a die receiving surface and an underside. The method also includes mounting a plurality of semiconductor dies on the die receiving surface, wherein the dies extend to a first height above the die receiving surface. The method further includes depositing an encapsulant on the die receiving surface, wherein an upper surface of the encapsulant is located above said first height. The method also includes singulating to form the plurality of packaged semiconductor devices by sawing into the underside, through the carrier blank and partially through the encapsulant to a depth intermediate the first height and the upper surface, wherein said sawing separates the carrier blank into a plurality of carriers, and removing encapsulant from the upper surface of the encapsulant at least until said saw depth is reached.
Abstract:
Consistent with example embodiments, a wafer substrate undergoes processing in which a resilient material is applied to the front-side and back-side surfaces of the wafer substrate. By defining trenches in saw lanes between active device die, additional resilient material may be placed therein. In an example embodiment, after the active device die are separated into individual product devices, the resulting product device has coverage on the front-side surface, back-side surface, and the four vertical faces of the encapsulated active device die. The front-side surface has exposed contact areas so that the product device may be attached to an end user's system circuit board. Further, the resilient coating protects the encapsulated active device die from damage during assembly.
Abstract:
Consistent with example embodiments, a wafer substrate undergoes processing in which a resilient material is applied to the front-side and back-side surfaces of the wafer substrate. By defining trenches in saw lanes between active device die, additional resilient material may be placed therein. In an example embodiment, after the active device die are separated into individual product devices, the resulting product device has coverage on the front-side surface, back-side surface, and the four vertical faces of the encapsulated active device die. The front-side surface has exposed contact areas so that the product device may be attached to an end user's system circuit board. Further, the resilient coating protects the encapsulated active device die from damage during assembly.
Abstract:
A method of making a plurality of packaged semiconductor devices. The method includes providing a carrier blank having a die receiving surface and an underside. The method also includes mounting a plurality of semiconductor dies on the die receiving surface, wherein the dies extend to a first height above the die receiving surface. The method further includes depositing an encapsulant on the die receiving surface, wherein an upper surface of the encapsulant is located above said first height. The method also includes singulating to form the plurality of packaged semiconductor devices by sawing into the underside, through the carrier blank and partially through the encapsulant to a depth intermediate the first height and the upper surface, wherein said sawing separates the carrier blank into a plurality of carriers, and removing encapsulant from the upper surface of the encapsulant at least until said saw depth is reached.
Abstract:
Consistent with example embodiments, a wafer substrate undergoes processing in which a resilient material is applied to the front-side and back-side surfaces of the wafer substrate. By defining trenches in saw lanes between active device die, additional resilient material may be placed therein. In an example embodiment, after the active device die are separated into individual product devices, the resulting product device has coverage on the front-side surface, back-side surface, and the four vertical faces of the encapsulated active device die. The front-side surface has exposed contact areas so that the product device may be attached to an end user's system circuit board. Further, the resilient coating protects the encapsulated active device die from damage during assembly.
Abstract:
Consistent with example embodiments, a wafer substrate undergoes processing in which a resilient material is applied to the front-side and back-side surfaces of the wafer substrate. By defining trenches in saw lanes between active device die, additional resilient material may be placed therein. In an example embodiment, after the active device die are separated into individual product devices, the resulting product device has coverage on the front-side surface, back-side surface, and the four vertical faces of the encapsulated active device die. The front-side surface has exposed contact areas so that the product device may be attached to an end user's system circuit board. Further, the resilient coating protects the encapsulated active device die from damage during assembly.