Abstract:
At a network device of each of a plurality of generator substations that is connected to a multi-terminal transmission line, phasor measurement data produced by a phasor measurement unit at the generator substation is assigned to a multicast stream. A request is received from a network device at any of the plurality of the generator substations to join the multicast stream so that a destination device at any of the plurality of generator substations receives the phasor measurement data carried by the multicast stream. The multicast stream is sent for distribution to one or more destination devices at respective ones of the plurality of generator substations.
Abstract:
In one embodiment, a requesting device (e.g., head-end application) requests a phase-related response from an end-point that does not know its phase in a polyphase power source system. In response, the requesting device receives the phase-related response from the end-point, where the response relays an identification of the end-point and related phase information without indicating an actual phase of the end-point, e.g., on which power-line is a response generated or at which time is a zero-crossing of the power source's waveform. The phase information of the phase-related response may then be correlated to a known phase of a known-phase device, such that the actual phase of the end-point may be identified based on the correlation.
Abstract:
This disclosure provides a system and method for client authentication that allows a service provider to implement multiple authentication challenges to verify a user/client. The system includes an extractor, a comparer, and an attributer. The extractor receives an Internet protocol source address from a client and extracts a media access control address. The extractor also determines a source identifier of the client from the media access control address. The comparer compares the extracted media access control address with a client media access control address associated with the client, and signals execution of one or more client authentication challenges when the extracted media access control address fails to match the at least one client media access control address associated with the client. The attributer associates the source identifier with the client after successful execution of a client authentication challenge.
Abstract:
A method and apparatus for handoff of a wireless client from a first network device to a second network device in a wired network are disclosed. In one embodiment, the method includes receiving data from a new wireless client at the second network device and transmitting a request for a route update for the new wireless client to the wired network. Prior to network convergence for the route update, data traffic for the new wireless client is received from the first network device and forwarded to the new wireless client. Context information for the new wireless client is transmitted from the second network device to other network devices in a proximity group of the second network device.
Abstract:
In one embodiment, a requesting device (e.g., head-end application) requests a phase-related response from an end-point that does not know its phase in a polyphase power source system. In response, the requesting device receives the phase-related response from the end-point, where the response relays an identification of the end-point and related phase information without indicating an actual phase of the end-point, e.g., on which power-line is a response generated or at which time is a zero-crossing of the power source's waveform. The phase information of the phase-related response may then be correlated to a known phase of a known-phase device, such that the actual phase of the end-point may be identified based on the correlation.
Abstract:
In one embodiment, a method includes receiving a packet from a source wireless device at a second switch, the source wireless device previously associated with a first switch and roamed to and associated with the second switch, wherein a point of presence for the source wireless device is maintained at the first switch, inserting into the packet a direction indicator, and forwarding the packet from the second switch to the first switch, the direction indicator identifying the packet as being transmitted towards the point of presence for the source wireless device to prevent a forwarding loop. An apparatus is also disclosed.
Abstract:
In one embodiment, a method includes receiving a communication from an endpoint device at a network access device located within a data path between the endpoint device and a network, identifying a network admission control policy for the endpoint device, enforcing at the network access device, the network admission control policy for traffic received from the endpoint device, and forwarding at the network access device, traffic from the endpoint device to the network in accordance with the network admission control policy. An apparatus is also disclosed.
Abstract:
In one embodiment, a subnet-scoped multicast packet is received on an interface of a forwarding device that is connected to a host device of a subnet of a forwarding domain. The received subnet-scoped multicast packet is transmitted from one or more other interfaces of the forwarding device that are connected to one or more other host devices of the subnet. The received subnet-scoped multicast packet is also encapsulated with an additional header. The encapsulated subnet-scoped multicast packet is forwarded from the forwarding device to an intermediate router which routes the encapsulated subnet-scoped multicast packet to one or more other forwarding devices configured to decapsulate the encapsulated subnet-scoped multicast packet and transmit the decapsulated subnet-scoped multicast packet to one or more connected host devices of an additional portion of the subnet.
Abstract:
In one embodiment, receiving a data packet in a data forwarding domain, encapsulating a header to the received data packet, and routing the encapsulated data packet in the data forwarding domain over a distribution tree are provided.
Abstract:
Techniques are provided to enable support of roaming wireless devices in a network such that the wireless devices can keep their Internet Protocol (IP) addresses as they roam across mobility sub-domains. Traffic for a wireless device that roams is tunneled back to the access switch that serves the IP subnet which includes an IP address for the wireless device. Traffic is tunneled back to that access switch for the wireless device when the wireless device roams to another access switch which does not serve the IP subnet for the wireless device in the same mobility sub-domain and when the wireless device roams to a different mobility sub-domain, in which case the traffic is tunneled between tunneling endpoints in the respective mobility sub-domains.