Abstract:
A system and method for using statistical analysis of information obtained during a rechargeable battery charging session, wherein the method is for optimizing one or more parameters that are used for controlling the charging of a rechargeable battery during the charging session.
Abstract:
A pulse generator is configured to generate electrical pulses of an electrical stimulation therapy. The pulse generator includes an N number of output channels and a microcontroller configured to generate instructions. The pulse generator is configured to generate different stimulation waveforms simultaneously for the output channels. The different waveforms have different waveform characteristics. A mesh electrode array includes an M number of electrodes. Each of the electrodes is configured to deliver the electrical pulses of the electrical stimulation therapy. M is at least several times greater than N. A solid state relay contains a plurality of controllable switches that is each configured to be turned on or off in response to the instructions received from the microcontroller, such that the solid state relay routes the output channels of the pulse generator to different subset of the electrodes of the mesh electrode array at different points in time.
Abstract:
A system and method for using statistical analysis of information obtained during a rechargeable battery charging session, wherein the method is for optimizing one or more parameters that are used for controlling the charging of a rechargeable battery during the charging session.
Abstract:
A pulse generator is configured to generate electrical pulses of an electrical stimulation therapy. The pulse generator includes an N number of output channels and a microcontroller configured to generate instructions. The pulse generator is configured to generate different stimulation waveforms simultaneously for the output channels. The different waveforms have different waveform characteristics. A mesh electrode array includes an M number of electrodes. Each of the electrodes is configured to deliver the electrical pulses of the electrical stimulation therapy. M is at least several times greater than N. A solid state relay contains a plurality of controllable switches that is each configured to be turned on or off in response to the instructions received from the microcontroller, such that the solid state relay routes the output channels of the pulse generator to different subset of the electrodes of the mesh electrode array at different points in time.
Abstract:
A pulse generator is configured to generate electrical pulses of an electrical stimulation therapy. The pulse generator includes an N number of output channels and a microcontroller configured to generate instructions. The pulse generator is configured to generate different stimulation waveforms simultaneously for the output channels. The different waveforms have different waveform characteristics. A mesh electrode array includes an M number of electrodes. Each of the electrodes is configured to deliver the electrical pulses of the electrical stimulation therapy. M is at least several times greater than N. A solid state relay contains a plurality of controllable switches that is each configured to be turned on or off in response to the instructions received from the microcontroller, such that the solid state relay routes the output channels of the pulse generator to different subset of the electrodes of the mesh electrode array at different points in time.
Abstract:
A method for wirelessly charging a battery in an implantable medical device including the steps of: providing a receiver in the implantable medical device and providing a temperature sensor in the implantable medical device. The method also includes receiving, via the receiver, a wireless power signal from an external charger and converting the wireless power signal into a battery charge signal including power for recharging the battery. The method yet also includes sensing a temperature of the implantable medical device with the temperature sensor. The method further includes changing a current of the battery charge signal from a first non-zero current to a second non-zero current that is different from the first non-zero current. Changing of the current of the battery charge signal is based on the temperature sensed by the temperature sensor.
Abstract:
A pulse generator is configured to generate electrical pulses of an electrical stimulation therapy. The pulse generator includes an N number of output channels and a microcontroller configured to generate instructions. The pulse generator is configured to generate different stimulation waveforms simultaneously for the output channels. The different waveforms have different waveform characteristics. A mesh electrode array includes an M number of electrodes. Each of the electrodes is configured to deliver the electrical pulses of the electrical stimulation therapy. M is at least several times greater than N. A solid state relay contains a plurality of controllable switches that is each configured to be turned on or off in response to the instructions received from the microcontroller, such that the solid state relay routes the output channels of the pulse generator to different subset of the electrodes of the mesh electrode array at different points in time.
Abstract:
The present disclosure involves a method of generating different stimulation waveforms as a part of sacral nerve stimulation therapy. A first stimulation waveform having a first stimulation waveform characteristic is generated. The first stimulation waveform is delivered to a first body part of a patient at least in part via a first channel. A second stimulation waveform having a second stimulation waveform characteristic is generated. The second stimulation waveform characteristic is different from the first stimulation waveform characteristic. The second stimulation waveform is delivered to a second body part of the patient at least in part via a second channel that is separate and independent from the first channel. The first body part and second body part correspond to different organs or different types of nerves.