SCENE GRAPH GENERATION FOR UNLABELED DATA

    公开(公告)号:US20210374489A1

    公开(公告)日:2021-12-02

    申请号:US17226561

    申请日:2021-04-09

    Abstract: Approaches are presented for training and using scene graph generators for transfer learning. A scene graph generation technique can decompose a domain gap into individual types of discrepancies, such as may relate to appearance, label, and prediction discrepancies. These discrepancies can be reduced, at least in part, by aligning the corresponding latent and output distributions using one or more gradient reversal layers (GRLs). Label discrepancies can be addressed using self-pseudo-statistics collected from target data. Pseudo statistic-based self-learning and adversarial techniques can be used to manage these discrepancies without the need for costly supervision from a real-world dataset.

    Scene graph generation for unlabeled data

    公开(公告)号:US11574155B2

    公开(公告)日:2023-02-07

    申请号:US17226561

    申请日:2021-04-09

    Abstract: Approaches are presented for training and using scene graph generators for transfer learning. A scene graph generation technique can decompose a domain gap into individual types of discrepancies, such as may relate to appearance, label, and prediction discrepancies. These discrepancies can be reduced, at least in part, by aligning the corresponding latent and output distributions using one or more gradient reversal layers (GRLs). Label discrepancies can be addressed using self-pseudo-statistics collected from target data. Pseudo statistic-based self-learning and adversarial techniques can be used to manage these discrepancies without the need for costly supervision from a real-world dataset.

    LEARNING TO GENERATE SYNTHETIC DATASETS FOR TRANING NEURAL NETWORKS

    公开(公告)号:US20200160178A1

    公开(公告)日:2020-05-21

    申请号:US16685795

    申请日:2019-11-15

    Abstract: In various examples, a generative model is used to synthesize datasets for use in training a downstream machine learning model to perform an associated task. The synthesized datasets may be generated by sampling a scene graph from a scene grammar—such as a probabilistic grammar—and applying the scene graph to the generative model to compute updated scene graphs more representative of object attribute distributions of real-world datasets. The downstream machine learning model may be validated against a real-world validation dataset, and the performance of the model on the real-world validation dataset may be used as an additional factor in further training or fine-tuning the generative model for generating the synthesized datasets specific to the task of the downstream machine learning model.

    Learning to generate synthetic datasets for training neural networks

    公开(公告)号:US11610115B2

    公开(公告)日:2023-03-21

    申请号:US16685795

    申请日:2019-11-15

    Abstract: In various examples, a generative model is used to synthesize datasets for use in training a downstream machine learning model to perform an associated task. The synthesized datasets may be generated by sampling a scene graph from a scene grammar—such as a probabilistic grammar—and applying the scene graph to the generative model to compute updated scene graphs more representative of object attribute distributions of real-world datasets. The downstream machine learning model may be validated against a real-world validation dataset, and the performance of the model on the real-world validation dataset may be used as an additional factor in further training or fine-tuning the generative model for generating the synthesized datasets specific to the task of the downstream machine learning model.

Patent Agency Ranking