Abstract:
Disclosed are a method and apparatus for analyzing an electrolyte of a redox flow battery. The method includes passing a first electrolyte solution or a second electrolyte solution through each of a first auxiliary cell and a second auxiliary cell connected to a main cell and a storage tank, closing at least one of the first auxiliary cell and the second auxiliary cell, applying current to the first auxiliary cell and the second auxiliary cell; creating data by measuring a voltage between the first auxiliary cell and the second auxiliary cell, and analyzing an electrolyte contained in the electrolyte solution in the first auxiliary cell or the second auxiliary cell based on variation in the voltage between the first auxiliary cell and the second auxiliary cell according to time. According to the present invention, information on an electrolyte can be obtained more efficiently and easily.
Abstract:
The present invention relates to a redox flow battery and, more specifically, to a redox flow battery comprising an anolyte, a catholyte, and an ion exchange membrane, wherein the anolyte and the catholyte respectively comprise an electrolyte containing a Cl− ion and an active material containing a vanadium ion, and the electrolyte comprises at least one side reaction inhibitor selected from the group consisting of a metal phosphate, a metal hydrochloride and a metal sulfate.
Abstract:
According to one embodiment of the present invention, the method for controlling the pump speed of a redox flow battery for transferring an electrolyte stored in an electrolyte tank to a cell stack comprises the steps of: measuring the input power and/or the output power of the redox flow battery; measuring the charging power and/or the discharging power of the redox flow battery; calculating the power loss of the redox flow battery by using the difference between the input power and the charging power, or the difference between the output power and the discharging power; and adjusting the pump speed according to the power loss.
Abstract:
Disclosed are a redox flow battery system and a control method for the same. In the redox flow battery system, an oxidation number is controlled by injecting at least one of an oxidant and a reducer into at least one of a cathode side and an anode side using a measured oxidation number of the electrolyte. Therefore, even though an oxidation number balance is inevitably broken, since an initial concentration of vanadium ion, that is, an average oxidation number is maintained without a large change in the concentration, efficiency and stability of a battery may be promoted, and the oxidation number balance may be monitored in real time and the oxidation number balance may be recovered without a separate process of separating electrolytes to entirely mixing the electrolytes, or the like, that is, without stopping a function of the battery, thereby facilitating maintenance and control of performance of the battery.