Abstract:
A method of preparing a high-purity silicon carbide (SiC) crystal, and more specifically, to a method of preparing high-purity SiC having an extremely low impurity content in an excellent yield and in large quantities. The method including preparing a reactor containing a reaction chamber; heating the conductive heating element in the reaction chamber; mixing a silicon precursor, a carbon precursor, and a carrier gas; injecting the mixed gas into the reaction chamber, depositing SiC on the conductive heating element and harvesting the deposited SiC crystals.
Abstract:
Disclosed are apparatus and method for preparing carbon black, in which the carbon black may be continuously formed and activated. In one embodiment, carbon black powders formed in a combustion reactor are converted into a slurry which in turn is refluxed to the combustion reactor in a repeated manner, thereby to allow successive activation treatments. In this way, a sufficient residence time for the activation of the carbon black may be secured.
Abstract:
A flow frame for a redox flow battery includes: a frame body having a plate-like shape and an electrode hole in its center where an electrode is to be disposed; four through holes disposed at corners of the frame body, respectively; a flow channel disposed at a front of the frame body above and below the electrode hole so that two of the through channels diagonal to each other as a pair are connected to each other via the electrode hole; through channels disposed at distal ends of the flow channel to cause electrolyte flows toward a rear of the frame body; and a distribution channel connecting the through channels with the electrode hole at the rear of the frame body. The flow channel has at least one branch point, and a change in cross sectional area of the flow channel before and after the branch point is 10% or less.
Abstract:
Disclosed herein are a manufacturing method of a carbon-silicon composite, the manufacturing method including: (a) preparing a silicon-carbon-polymer matrix slurry including a silicon slurry, carbon particles, a monomer of polymer, and a cross-linking agent; (b) performing a heat treatment process on the silicon-carbon-polymer matrix slurry to manufacture a silicon-carbon-polymer carbonized matrix; (c) pulverizing the silicon-carbon-polymer carbonized matrix to manufacture a silicon-carbon-polymer carbonized matrix structure; and (d) mixing the silicon-carbon-polymer carbonized matrix structure with a first carbon raw material and performing a carbonization process to manufacture a carbon-silicon composite, the carbon-silicon composite, an anode for a secondary battery manufactured by applying the carbon-silicon composite, and a secondary battery including the anode for a secondary battery.
Abstract:
A module system of a redox flow battery is disclosed. The system includes a first redox flow battery module, through which first and second electrolytic solutions circulate, a second redox flow battery module, through which first and second electrolytic solutions circulate, first and second storage tanks storing the first electrolytic solutions of the first and second redox flow battery modules, a first main pipe connecting the first redox flow battery module fluidically to the first storage tank, and a first transfer pipe and a first equilibrium pipe which are configured to allow for fluid communication between the first electrolytic solutions of the first and second redox flow battery module. The first main pipe has a diameter greater than that of the first transfer pipe.
Abstract:
The present disclosure relates to a sulfur-carbon composite and a preparing method thereof, and more particularly, to a sulfur-carbon composite having an aggregated structure by performing a pressure heat treatment on a mixture of a carbonaceous conductive material and a sulfur-containing amorphous carbon material and carbonizing the same, and a preparing method thereof.
Abstract:
Disclosed herein is a method for preparing a multilayer metal complex having excellent surface properties. Specifically, the present invention relates to a method for preparing a multilayer metal complex having a low cost metal-core/noble metal-shell structure, which has a high mass fraction of noble metals and exhibits excellent surface properties and dispersity.
Abstract:
Disclosed herein is a device for producing a polymer dispersion solution of core-shell structured silicon nanoparticles. The device includes: a canister for storing silicon nanoparticles; a quantitative feeder for receiving the silicon nanoparticles released from the canister and for quantitatively feeding the same; a mixing tank for mixing block copolymer constituting a shell, and a dispersion solvent, and the silicon nanoparticles fed through the quantitative feeder to form core-shell structured silicon nanoparticles; an ultrasonic disperser for receiving the core-shell structured silicon nanoparticles released from the mixing tank and a dispersion solvent and for dispersing the particles with ultrasonic waves; and a dispersion solvent tank for feeding a dispersion solvent into the mixing tank and the ultrasonic disperser.
Abstract:
Disclosed are an electrode for electrolytic plating and an electrolytic plating apparatus including the same. A contact area between a surface of an object to be plated and an electrode can be minimized using an electrode for electrolytic plating having a non-conductive pattern partially formed thereon. Generation of a metal composite having multiple cores due to simultaneous contact between plural objects to be plated and the conductive region being not covered with non-conductive pattern can be prevented. Since the surface of the object to be plated can be coated with different kinds of metals before galvanic corrosion occurs, a metal composite having a core-shell structure can have improved reliability, quality and stability. Various different kinds of metals can be coated onto the surface of the object to be plated without limitation as the object to be plated.
Abstract:
The present disclosure provides a carbon-silicon composite including: a first carbon matrix; and carbonized Si-block copolymer core-shell particles dispersed uniformly in the first carbon matrix. The present disclosure also provides a lithium secondary battery anode and a lithium secondary battery, which include the carbon-silicon composite.