Abstract:
A skin diagnosing device includes an optical unit including: an optical system that uses OCT; an optical mechanism to guide light from the optical unit to skin to scan the skin; a loading device to apply predetermined deformation energy to the skin; a control computation unit to compute tomographic distribution of predetermined status values relating to the skin by controlling driving of the loading device and the optical mechanism and processing optical interference signals output from the optical unit in response to the driving, to compute an evaluation value of the skin based on the tomographic distribution; and a display device to display the evaluation value of the skin. The control computation unit computes the evaluation value by computing mechanical characteristics and a blood flow condition of the skin as the status values and associating the mechanical characteristics and the blood flow condition at a cross-sectional position of the skin.
Abstract:
A device of an embodiment includes: an optical mechanism; a control computation unit that controls driving of the optical mechanism, acquires a tomographic image of the skin by processing an optical interference signal from the optical system, and calculates a network of blood vessels on the basis of the tomographic image; and a display device that displays the network of blood vessels. The control computation unit expresses thicknesses of the network of blood vessels by defining, as a blood vessel radius, a radius from a set of blood vessel corresponding coordinates determined to be a blood vessel in the calculation of the network of blood vessels and within which other sets of blood vessel corresponding coordinates are present and, superimposing distinctions based on magnitudes of blood vessel radii from the respective sets of blood vessel corresponding coordinates onto the image of the network of blood vessels.
Abstract:
A device of an embodiment includes: an optical mechanism that guides light from a light source to skin tissue to scan the skin tissue; a control computation unit that controls driving of the optical mechanism, acquires tomographic images of the skin by processing optical interference signals from the optical system, and calculates a network of blood vessels on the basis of the tomographic images; and a display device that displays the network of blood vessels. The control computation unit computes autocorrelation values at coordinates in epidermis corresponding regions of the tomographic images, excludes combinations of tomographic images with the computed autocorrelation values corresponding to predetermined low autocorrelation, computes autocorrelation values at coordinates in dermis corresponding regions, determines coordinates at which the autocorrelation values in the dermis corresponding regions are within a predetermined low correlation range to be blood vessels or blood vessel candidates, and calculates a network of blood vessels.
Abstract:
A device of an embodiment includes: an optical mechanism; a control computation unit that controls driving of the optical mechanism, acquires a tomographic image of skin by processing an optical interference signal from an optical system, and calculates a network of blood vessels on the basis of the tomographic image; and a display device that displays an image of the network of blood vessels. The control computation unit sets a reference profile obtained by function approximation of an intensity profile in a depth direction of the acquired tomographic image, calculates a difference between an intensity value on the reference profile and an actual intensity value as an outlier V, the intensity values being those in the depth direction in the tomographic image, determines, as blood vessels or blood vessel candidates, coordinates with the outliers V within a predetermined blood vessel determination range, and calculates the network of blood vessels.
Abstract:
An ultrasonic measurement method includes irradiating an object to be measured with an ultrasonic wave, acquiring a reflection wave from the object, calculating at a processor an acoustic impedance in a depth direction of the object from the reflection wave, and estimating and outputting a thickness of the object based upon an inflection point determined by second-order differentiation of the acoustic impedance.
Abstract:
An image analysis apparatus that analyzes a skin condition from a video of the face of a subject captured with an imaging part includes a tracking part configured to track the amount of changes of multiple tracking points arranged in advance in an analysis region of the face based on a change in the expression of the face included in the video, and obtain the compression ratio of the skin in the analysis region based on the amount of changes, and a skin condition analysis part configured to analyze the skin condition of the subject based on the compression ratio obtained by the tracking part.
Abstract:
A surface property measurement technology by which a surface property of a substance can be evaluated with high accuracy, is provided.A surface property measurement method includes radiating an ultrasonic wave to a measurement target and acquiring a reflected signal from the measurement target; calculating, by a measurement apparatus, a maximum value of a cross-correlation function between the reflected signal from the measurement target and a reference reflected signal from a reference substance acquired in advance; calculating a reflection component at an interface, by using the maximum value of the cross-correlation function; and outputting, as a measurement value, one of an acoustic impedance of the measurement target or an acoustic impedance of the reference substance, according to a result of comparing the reflection component with the reference reflected signal.