Abstract:
Various embodiments may relate to a drive circuit of an illumination device. The drive circuit has an output terminal connected to a load of the illumination device. The drive circuit includes a power supply, a boost control unit connected to an output terminal of the power supply, a main control unit connected to the boost control unit, and a load current control unit connected between the main control unit and the load, and including a switch unit. The switch unit includes a first sub switch unit, which is configured to switch according to a dimming control signal from the main control unit, and further includes a second sub switch unit connected to the first sub switch unit. The second sub switch unit is configured to be turned on in a situation where the first sub switch unit is turned on so as to turn off the first sub switch unit.
Abstract:
A driving device for an illuminating device may include a plurality of sub illuminating units. The driving device may include a plurality of sub driving modules in series connected to an input voltage source to distributively store energy from the input voltage source. Each of the sub driving modules is allocated with and electrically connected with one sub illuminating unit so as to release the stored energy to the sub illuminating unit allocated thereto.
Abstract:
A master illuminating device may include an illuminating module, and a signal acquisition and processing unit for detecting the surrounding and outputting a control signal. The illuminating module is designed to receive the control signal and is driven according to the control signal. The illuminating device further include a signal transmission unit which is designed to receive the control signal and is designed to transmit the control signal.
Abstract:
Various embodiments relate to a load driver and a luminaire including the load driver. The load driver may include a voltage limiting circuit including a first polar capacitor and a second polar capacitor connected in inverse series, which are connected in parallel respectively with first and second current limiting elements, where the first and second current limiting elements limit the direction in which current flows so that current flows through different polar capacitors in positive and negative halves of a cycle of an alternating-current power supply.
Abstract:
Various embodiments may relate to a drive circuit of an illumination device. The drive circuit has an output terminal connected to a load of the illumination device. The drive circuit includes a power supply, a boost control unit connected to an output terminal of the power supply, a main control unit connected to the boost control unit, and a load current control unit connected between the main control unit and the load, and including a switch unit. The switch unit includes a first sub switch unit, which is configured to switch according to a dimming control signal from the main control unit, and further includes a second sub switch unit connected to the first sub switch unit. The second sub switch unit is configured to be turned on in a situation where the first sub switch unit is turned on so as to turn off the first sub switch unit.
Abstract:
Various embodiments relate to a load driver and a luminaire including the load driver. The load driver may include a voltage limiting circuit including a first polar capacitor and a second polar capacitor connected in inverse series, which are connected in parallel respectively with first and second current limiting elements, where the first and second current limiting elements limit the direction in which current flows so that current flows through different polar capacitors in positive and negative halves of a cycle of an alternating-current power supply.
Abstract:
Various embodiments may relate to a drive circuit of an illumination device. The drive circuit has an output terminal connected to a load of the illumination device. The drive circuit includes a power supply, a boost control unit connected to an output terminal of the power supply, a main control unit connected to the boost control unit, and a load current control unit connected between the main control unit and the load, and including a switch unit. The switch unit includes a first sub switch unit, which is configured to switch according to a dimming control signal from the main control unit, and further includes a second sub switch unit connected to the first sub switch unit. The second sub switch unit is configured to be turned on in a situation where the first sub switch unit is turned on so as to turn off the first sub switch unit.
Abstract:
A driving device for an illuminating device may include a plurality of sub illuminating units. The driving device may include a plurality of sub driving modules in series connected to an input voltage source to distributively store energy from the input voltage source. Each of the sub driving modules is allocated with and electrically connected with one sub illuminating unit so as to release the stored energy to the sub illuminating unit allocated thereto.
Abstract:
A master illuminating device may include an illuminating module, and a signal acquisition and processing unit for detecting the surrounding and outputting a control signal. The illuminating module is designed to receive the control signal and is driven according to the control signal. The illuminating device further include a signal transmission unit which is designed to receive the control signal and is designed to transmit the control signal.