Abstract:
A method for compensating for both material or chromatic dispersion and modal dispersion effects in a multimode fiber transmission system is provided. The method includes, but is not limited to measuring a fiber-coupled spatial spectral distribution of the multimode fiber laser transmitter connected with a reference multimode fiber optical cable and determining the amount of chromatic dispersion and modal dispersion present in the reference multimode fiber optic cable. The method also includes, but is not limited to, designing an improved multimode fiber optic cable which compensates for at least a portion of the chromatic dispersion and modal dispersion present in the reference multimode fiber optic cable resulting from the transmitter's fiber-coupled spatial spectral distribution.
Abstract:
A graded index multimode fiber and method of producing the graded index multimode fiber utilize a technique of reducing an index profile of the core of the multimode fiber below a standard parabolic index profile. This can be done by changing dopant concentrations in the fiber core over the radius of the fiber core. The result is a multimode fiber having differential mode delay characteristics that are intentionally not minimized. The index profile can be reduced below the standard parabolic index profile over the entire radius of the core, or only for radii above a specified radius.
Abstract:
Methods for designing improved multimode fiber optic cables are provided. In an embodiment, the method includes measuring a DMD waveform profile of a reference multimode fiber optic cable, where the reference multimode fiber optic cable has a reference refractive index profile. The method of this embodiment further includes designing an improved refractive index profile for the improved multimode fiber optic cable, where the improved refractive index profile comprises the reference refractive index profile modified by a quantity Δn(r), where r is a radius from the center of the core, where the quantity Δn(r) is negative over at least some radial window, and where the quantity Δn(r) follows a function such that the improved multimode fiber optic cable having the improved refractive index profile produces a DMD waveform profile having a shift to the left in radial pulse waveforms for increasing radii.
Abstract:
A new metric applicable to the characterization and design of multimode fiber (MMF) is described. The metric is derived from a Differential Mode Delay (DMD) measurement and when used in combination with industry-standard metrics such as Effective Modal Bandwidth (EMB) and DMD, yields a more accurate prediction of MMF channel link performance as measured by Bit Error Rate (BER) testing. The metric can also be used in the design of MMF for improved bandwidth performance. When implemented as a test algorithm in production, it can be used to select, sort, or verify fiber performance. This process can yield a multimode fiber design with a greater performance margin for a given length, and/or a greater length for a given performance margin.
Abstract:
A graded index multimode fiber and method of producing the graded index multimode fiber utilize a technique of reducing an index profile of the core of the multimode fiber below a standard parabolic index profile. This can be done by changing dopant concentrations in the fiber core over the radius of the fiber core. The result is a multimode fiber having differential mode delay characteristics that are intentionally not minimized. The index profile can be reduced below the standard parabolic index profile over the entire radius of the core, or only for radii above a specified radius.
Abstract:
A method for compensating for both material or chromatic dispersion and modal dispersion effects in a multimode fiber transmission system is provided. The method includes, but is not limited to measuring a fiber-coupled spatial spectral distribution of the multimode fiber laser transmitter connected with a reference multimode fiber optical cable and determining the amount of chromatic dispersion and modal dispersion present in the reference multimode fiber optic cable. The method also includes, but is not limited to, designing an improved multimode fiber optic cable which compensates for at least a portion of the chromatic dispersion and modal dispersion present in the reference multimode fiber optic cable resulting from the transmitter's fiber-coupled spatial spectral distribution.
Abstract:
A new metric applicable to the characterization and design of multimode fiber (MMF) is described. The metric is derived from a Differential Mode Delay (DMD) measurement and when used in combination with industry-standard metrics such as Effective Modal Bandwidth (EMB) and DMD, yields a more accurate prediction of MMF channel link performance as measured by Bit Error Rate (BER) testing. The metric can also be used in the design of MMF for improved bandwidth performance. When implemented as a test algorithm in production, it can be used to select, sort, or verify fiber performance. This process can yield a multimode fiber design with a greater performance margin for a given length, and/or a greater length for a given performance margin.
Abstract:
Methods for designing improved multimode fiber optic cables are provided. In an embodiment, the method includes measuring a DMD waveform profile of a reference multimode fiber optic cable, where the reference multimode fiber optic cable has a reference refractive index profile. The method of this embodiment further includes designing an improved refractive index profile for the improved multimode fiber optic cable, where the improved refractive index profile comprises the reference refractive index profile modified by a quantity Δn(r), where r is a radius from the center of the core, where the quantity Δn(r) is negative over at least some radial window, and where the quantity Δn(r) follows a function such that the improved multimode fiber optic cable having the improved refractive index profile produces a DMD waveform profile having a shift to the left in radial pulse waveforms for increasing radii.