Abstract:
An optical detection device includes a first linear light source, a second linear light source, an optical sensor array and a processor. The first linear light source is adapted to project a first long strip illumination beam onto the target container. The second linear light source is adapted to project a second long strip illumination beam onto the target container, and the second long strip illumination beam is crossed with the first long strip illumination beam. The optical sensor array is adapted to receive a first long strip detection beam and a second long strip detection beam reflected from the target container. The processor is electrically connected to the optical sensor array. The processor is adapted to analyze intensity distribution of the first long strip detection beam and the second long strip detection beam to acquire a relative distance between the optical sensor array and the target container.
Abstract:
The present invention discloses an automatic cleaner for cleaning a surface. The automatic cleaner comprises: a light emitting device, configured to emit first light, wherein a first angle exists between a first emitting direction of the first light and the surface when the automatic cleaner is located on the surface, wherein the first angle is larger than 0° and smaller than 90°; an optical sensor, configured to detect first optical data generated based on the first light; and a processing circuit, configured to determine if the liquid or the colloid exists in a predetermined range of the automatic cleaner based on the first optical data. The processing circuit further determines a location of the automatic cleaner on the surface according to navigation optical data.
Abstract:
An optical device, comprising: a processing circuit; a light source, configured to emit light to a surface; and an optical sensor, configured to sense optical data generated based on reflected light or scattering light of the light. The processing circuit computes a dirt level of the surface according to the optical data.
Abstract:
An optical detecting device capable of preventing environmental pollution includes a casing, an optical detecting component and a transparent component. The casing includes a light through unit and at least one accommodating structure. The optical detecting component is disposed inside the accommodating structure. The transparent component is disposed inside the accommodating structure and located above the optical detecting component, to partly fill the accommodating structure at least and block between the light through unit and the optical detecting component.
Abstract:
An optical detecting module includes a housing, a light emitting component, an optical detecting component and an optical signal collecting component. The light emitting component is disposed inside the housing. The optical detecting component is disposed inside the housing to receive an optical detecting signal generated by the light emitting component. The optical signal collecting component is utilized to hold the light emitting component for signal collection. The optical signal collecting component includes an output portion, a bottom portion and at least one lateral portion. The light emitting component is disposed on the bottom portion, and an optical positive signal of the optical detecting signal is projected out of the housing through the output portion. The lateral portion is bent from the bottom portion to reflect an optical lateral signal of the optical detecting signal, and the optical lateral signal is projected out of the housing through the output portion.
Abstract:
An electronic button applied to a touch panel is disclosed in the present invention. The electronic button includes a switch and a transparent conductive structure. The switch is electrically connected to the touch panel for switching functions of the touch panel. The transparent conductive structure is electrically connected to the switch and disposed on a surface of the touch panel. The transparent conductive structure transmits a current, and a reference value of the current is varied when an external object contacts the transparent conductive structure, so as to drive the switch to power on and to power off the touch panel.
Abstract:
An electronic device, comprising: a first light source, configured to emit first light; a second light source, configured to emit second light; a first optical sensor, configured to sense first optical data generated based on reflected light of the first light; a light guiding device, configured to receive the second light; and a second optical sensor, configured to sense second optical data generated based on the second light emitted by the light guiding device. The first optical sensor and the second optical sensor can be integrated to a single optical sensor.
Abstract:
A detecting device for detecting liquid or colloid, comprising: a light emitting device, configured to emit first light, wherein a first angle between a first emitting direction of the first light and a surface when the detecting device is located on the surface, wherein the first angle is larger than 0° and smaller than 90°; an optical sensor, configured to detect first optical data generated based on the first light; and a processing circuit, configured to determine if the liquid or the colloid exists in a predetermined range of the detecting device based on the first optical data. An automatic cleaner applying the detecting device is also disclosed.
Abstract:
An optical detection device of detecting a target container includes a linear light source, an optical sensor array and a processor. The linear light source is adapted to project a long strip illumination beam onto the target container. The optical sensor array includes a plurality of sensing units arranged as a long strip adapted to receive a long strip detection beam reflected from the target container. The processor is electrically connected to the optical sensor array. The processor is adapted to analyze intensity distribution of the plurality of sensing units to acquire a relative distance between the optical sensor array and a rim of the target container.
Abstract:
An electronic device, comprising: a first light source, configured to emit first light; a second light source, configured to emit second light; a first optical sensor, configured to sense first optical data generated based on reflected light of the first light; a light guiding device, configured to receive the second light; and a second optical sensor, configured to sense second optical data generated based on the second light emitted by the light guiding device. The first optical sensor and the second optical sensor can be integrated to a single optical sensor.