Abstract:
A low-power wireless ionizing radiation measurement system is provided that is intended to be used in a wearable dosimeter for occupational radiation monitoring.
Abstract:
An apparatus is disclosed comprising a metal oxide semiconductor capacitor (MOSCAP) comprising one or more gate layers disposed over a contiguous radiation-sensitive insulating layer, wherein the contiguous radiation-sensitive insulating layer comprises one or more contacting dielectric layers. A method may be employed to measure a value of a radiation-induced capacitance response of a metal oxide semiconductor capacitor (MOSCAP) from multiple non-contacting gate layers disposed over a radiation-sensitive layer comprising of one or more contacting dielectric layers to thereby enhance a sensitivity and a resolution of a radiation response of the MOSCAP.
Abstract:
A kinetic energy to electrical energy converter. The converter includes a housing defining a cavity having a circumference and covers enclosing the cavity, at least one fixedly supported perimeter magnet disposed about the circumference, at least one magnetically levitating center magnet magnetically influenced by the at least one fixedly supported magnet, positioned in the cavity and limited to substantially a two dimensional movement by the covers, and at least one coil fixedly supported with respect to the fixedly supported perimeter magnet, movements of the a least one center magnet is configured to generate an electrical current in the at least one coil.
Abstract:
A micro-electromechanical system-type (MEMS) sensor arrangement for wirelessly measuring temperatures is disclosed. The MEMS sensor arrangement includes a multimorph sensor, a sensor coil coupled to the multimorph sensor, and a readout coil configured to be magnetically coupled to the sensor coil to i) energize the sensor coil, and ii) provide a readout of the natural frequency of the multimorph sensor, the sensor coil and the readout coil.
Abstract:
A method and apparatus is disclosed for differentially altering the radiation response across multiple MOSCAP sensors by placing different thin gate materials with different atomic numbers on a series of MOS-based radiation sensors. The secondary electrons created in high-atomic weight materials (such as gold) at lower incident photon energy levels enable a tissue equivalent radiation response and radiations source identification/differentiation. This is a desirable alternative to using filters with different coefficients across a series of MOSCAP radiation sensor which will attenuate the signal and degrade the device form factor. The method and apparatus disclosed achieves the same functionality but with inherent gain instead of attenuation, thus increasing sensitivity. This will improve the minimum resolvable dose for x-rays and low-energy gammas (high-energy gammas will remain the same), and produces a response that can distinguish the energy level of incident radiation photon.