Abstract:
A method of interleaving a memory by mapping address bits of the memory to a number N of memory channels iteratively in successive rounds, wherein in each round except the last round: selecting a unique subset of address bits, determining a maximum number (L) of unique combinations possible based on the selected subset of address bits, mapping combinations to the N memory channels a maximum number of times (F) possible where each of the N memory channels gets mapped to an equal number of combinations, and if and when a number of combinations remain (K, which is less than N) that cannot be mapped, one to each of the N memory channels, entering a next round. In the last round, mapping remaining most significant address bits, not used in the subsets in prior rounds, to each of the N memory channels.
Abstract:
Various embodiments of methods and systems for cache-level memory management in a system on a chip (“SoC”) are disclosed. Memory utilization is optimized in certain embodiments through application of customized hashing algorithms at the lower level cache of individual application clients. Advantageously, for those application clients that do not require or benefit from hashing transaction traffic their transactions are not subjected to hashing. For those application clients that do benefit from hashing transaction traffic in order to minimize page conflicts at a double data rate (“DDR”) memory device, each client further benefits from a customized, and thus optimized, hashing algorithm. Because transaction streams arrive at the memory controller already hashed, or purposefully unhashed, the need for validating clients during a development phase is minimized.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus relating to reference signal design for Pi/2-binary phase shift keying (Pi/2-BPSK) modulation with frequency domain spectral shaping (FDSS). In certain aspects, a method includes generating a set of Gold sequences each having a length and adjusting the length of each of the Gold sequences in the set of Gold sequences. The method also includes applying a phase rotation to each of the Gold sequences in the set of Gold sequences and modulating each of the Gold sequences in the set of Gold sequences by a DFT-s-OFDM with frequency domain spectral shaping (FDSS). The method further includes selecting one or more sequences from the set of modulated Gold sequences based on a parameter and transmitting the one or more sequences to a user equipment (UE) or a base station (BS).
Abstract:
Ephemeral data stored in a cache is read when needed but is not written to system memory so as to save power and bandwidth. In an embodiment, a no-writeback bit associated with the ephemeral data is set in response to a read-no-writeback instruction. Data in a cache line for which its no-writeback bit has been set is not written back into system memory. Accordingly, when evicting cache lines, if a cache line has a no-writeback bit set, then the data in that cache line is discarded without being written back to system memory.