Abstract:
This disclosure provides methods, apparatuses, wireless nodes, and computer-readable mediums for wireless communications. In one aspect, a method is provide for a Barker-modulated waveform with constant envelope for a wireless local area network (WLAN) signal. A method that may be performed by a transmitter device includes generating a Barker-modulated signal having a constant envelope and transmitting the Barker-modulated signal in a WLAN.
Abstract:
Methods, systems, and devices are described for wireless communication. In one aspect, a method of wireless communication includes receiving, by a first wireless device, compressed beamforming information from each of a plurality of stations, the compressed beamforming information including a feedback signal-to-noise ratio (SNR) value and compressed feedback matrix. The method also includes determining a multi-user signal-to-interference-plus noise ratio (SINR) metric for each of the plurality of stations based at least in part on the received feedback SNR values and the received compressed feedback matrices.
Abstract:
Methods, systems, and devices are described for wireless communication. In one aspect, a method of wireless communication includes receiving, by a first wireless device, compressed beamforming information from each of a plurality of stations, the compressed beamforming information including a feedback signal-to-noise ratio (SNR) value and compressed feedback matrix. The method also includes determining a multi-user signal-to-interference-plus noise ratio (SINR) metric for each of the plurality of stations based at least in part on the received feedback SNR values and the received compressed feedback matrices.
Abstract:
A DC offset filter for wide band beamforming receivers is disclosed. In an exemplary embodiment, an apparatus includes a first mixer configured to down-convert an RF wideband beamformed signal to generate a first baseband wideband beamformed signal, the RF wideband beamformed signal having a beam pattern selected from a plurality of beam patterns, and a notch filter configured to remove DC offset from the first baseband wideband beamformed signal independent of the beam pattern.
Abstract:
A method for multi-user multiple-input multiple-output (MU-MIMO) communications between a communications device and a client station (STA). The communications device may initiate MU-MIMO transmissions to the STA according to a first modulation and coding scheme (MCS) and a first transmission power. The device may monitor packet error rates (PERs) associated with the MU-MIMO transmissions to the STA and select a second MCS to be used for subsequent MU-MIMO transmissions to the STA based, at least in part, on the PERs and the first transmission power. The device may determine a target transmission power associated with the first MCS and compare the target transmission power with the first transmission power. The selection of the second MCS may be based, at least in part, on the comparison. The device may record PERs associated with the MU-MIMO transmissions, in a PER table, in relation to the first transmission power.
Abstract:
A DC offset filter for wide band beamforming receivers is disclosed. In an exemplary embodiment, an apparatus includes a first mixer configured to down-convert an RF wideband beamformed signal to generate a first baseband wideband beamformed signal, the RF wideband beamformed signal having a beam pattern selected from a plurality of beam patterns, and a notch filter configured to remove DC offset from the first baseband wideband beamformed signal independent of the beam pattern.