Abstract:
An apparatus is disclosed for an antenna with a conductive cage. In an example aspect, the apparatus includes a ground plane with at least one opening. The apparatus also includes at least one antenna assembly with at least one radiating element, at least one feed via, and a conductive cage. The radiating element is implemented on a first plane that is substantially parallel to the ground plane. The feed via is connected to the at least one radiating element and is configured to connect to at least one transmission line through the opening. The conductive cage includes at least three ground vias, which are connected to the ground plane at positions that are distributed around the opening. Lengths of the at least three ground vias extend a portion of a distance between the ground plane and the radiating element.
Abstract:
An antenna system includes: a ground conductor; a substrate; a pair of planar dipole conductors disposed such that at least a portion of the substrate is disposed between the ground conductor and the pair of dipole conductors; a pair of energy couplers each electrically connected to a respective one of the pair of dipole conductors; and a pair of isolated lobes including electrically-conductive material. The pair of isolated lobes are electrically separate from the pair of dipole conductors and the pair of energy couplers, and disposed between the pair of dipole conductors and the ground conductor.
Abstract:
Exemplary embodiments of the present disclosure are related to a wireless power resonator and method that includes a wireless power transmit element. The wireless power transmit element may include a substantially planar transmit antenna configured to generate a magnetic field and formed from a conductive trace including a plurality of distributed inductive elements along the conductive trace. The transmit element may further include a filter formed from selected ones of the plurality of distributed inductive elements of the planar transmit antenna and configured to generate at least one frequency response.
Abstract:
The present disclosure describes aspects of a wireless power-transmission shield for a wireless charger. The wireless charger includes a wireless power transmitter configured to generate an alternating magnetic field at a charging frequency. As a result of the alternating magnetic field, a spurious electromagnetic field is further generated at a spurious frequency different than the charging frequency. The wireless charger includes a shield having an associated conductivity or an associated impedance. The shield is configured to be substantially transparent to the alternating magnetic field based on the charging frequency and the associated conductivity of the shield or the associated impedance of the shield. The shield is further configured to be lossy to the spurious electromagnetic field based on the spurious frequency and the associated conductivity of the shield or the associated impedance of the shield.
Abstract:
An apparatus for wireless power reception in an electronic device may include a casing configured to house electronic components of the electronic device. The casing may include a non-conductive support substrate and a metal layer disposed on the support substrate. The apparatus may include a power receiving element configured to magnetically couple to an externally generated magnetic field to produce power for one or more of the electronic components of the electronic device.
Abstract:
An electronic apparatus may include an electrically conductive body configured to magnetically couple to a first magnetic field. A first tuning element may be connected to the electrically conductive body. An electrically conductive coil may be wound about an opening defined by the electrically conductive body, and configured to magnetically couple to a second magnetic field.
Abstract:
An apparatus for wireless charging may include a casing for housing an electronic device and a plurality of power receiving elements that can couple to an externally generated magnetic field to wirelessly power or charge a load in the electronic device. At least one of the power receiving elements may comprise an electrically conductive segment of the casing.
Abstract:
An apparatus for wireless power reception in an electronic device may include a casing configured to house electronic components of the electronic device. The casing may include a non-conductive support substrate and a metal layer disposed on the support substrate. The apparatus may include a power receiving element configured to magnetically couple to an externally generated magnetic field to produce power for one or more of the electronic components of the electronic device.
Abstract:
An apparatus for wireless power transfer is disclosed. The apparatus may include a portion of a housing of an electronic device. The portion of the housing may include at least a first electrically conductive segment and a second electrically conductive segment spaced apart from the first electrically conductive segment. A coil of electrically conductive material may be arranged relative to the first and second electrically conductive segments. A power receiving element may include the coil of electrically conductive material and either or both the first and second electrically conductive segments.
Abstract:
A method and system for providing wireless power transfer through a metal object is provided. In one aspect, an apparatus for wirelessly receiving power via a magnetic field is provided. The apparatus includes a metal cover including an inner portion and an outer portion. The outer portion is configured to form a loop around the inner portion of the metal cover. The outer portion is configured to inductively couple power via the magnetic field. The apparatus includes a receive circuit electrically coupled to the outer portion and configured to receive a current from the outer portion generated in response to the magnetic field. The receive circuit is configured to charge or power a load based on the current.