Abstract:
Methods and apparatuses for a mobile station to obtain a position fix using synchronous hybrid positioning and asynchronous hybrid positioning techniques are described. In one embodiment, a wireless communication apparatus may transmit a request to a mobile station for fine time assistance (FTA) corresponding to a global navigation satellite system (GNSS). The apparatus may be configured to receive the FTA, first timing measurements from one or more base stations, and second timing measurements from the GNSS. The apparatus may identify whether the FTA was received from the mobile station. If it is determined that the FTA was received, then a system frame number (SFN) received within the FTA may be identified, wherein the SFN is associated with one of the base stations. The apparatus may then establish a position fix for the mobile station using a synchronous hybrid positioning technique that involves relating the timing measurements to a time scale associated with the SFN. If it is determined that the FTA was not received, then the apparatus may establish the position fix using an asynchronous hybrid positioning technique.
Abstract:
Methods and apparatus are described for providing location assistance information to a mobile device. An example of a method for providing location assistance information to the mobile device by a femto base station includes receiving a macro base station signal during a monitoring time period during which the femto base station is substantially stationary, obtaining location assistance information, the location assistance information being based, at least in part, on the received macro base station signal, and transmitting the location assistance information to the mobile device.
Abstract:
Techniques for transferring trust between networks are described herein. An example of a method of using a mobile device to transfer trust between networks described herein includes receiving WAN base station information including a WAN base station trustworthiness value, determining a WAN position estimate for the mobile device based on the WAN base station information, receiving access point information including an access point trustworthiness value, determining an access point position estimate for the mobile device based on the access point information, determining if the WAN position estimate and the access point position estimate are corroborated, and increasing the access point trustworthiness value if the WAN position estimate and the access point position estimate are corroborated and the WAN base station trustworthiness value is higher than the access point trustworthiness value.
Abstract:
Various methods, apparatuses and/or articles of manufacture are provided for use by an electronic device to generate a recommended candidate position fix mode to a mobile device for use in a particular region of an environment. Such a candidate position fix mode may, for example, be selected from a plurality of wireless signal-based positioning modes comprising at least: a first wireless signal-based positioning mode based on first wireless signals transmitted by a terrestrial-based transmitting device, a second wireless signal-based positioning mode based on second wireless signals transmitted a satellite-based transmitting device, and a third wireless signal-based positioning mode based on a combination of the first wireless signals and the second wireless signals. In certain example implementations, assistance data indicative of at least the candidate position fix mode may be transmitted to the mobile device.
Abstract:
Various methods, apparatuses and/or articles of manufacture are provided which may be implemented for use by a mobile device to affect at least one positioning function based, at least in part, on a recommended candidate position fix mode received from another electronic device for use in a particular region of an environment. For example, a mobile device may obtain assistance data indicative of a candidate position fix mode for a partial region of an environment navigable by the mobile device, and in response to a determination that the mobile device is estimated to be located within a threshold proximity of the partial region, affect a wireless signal-based positioning function based, at least in part, on the candidate position fix mode.
Abstract:
Disclosed are systems, apparatus, devices, methods, media, products, and other implementations, including a method that includes determining a phase difference for a wireless signal detected by a first of at least two antennas of a receiver and by a second of the at least two antennas, determining an orientation of the receiver based on information obtained from one or more sensing devices coupled to the receiver, and determining a direction, relative to an external frame of reference, at which the wireless signal arrives at the receiver based on the determined phase difference and the orientation of the receiver determined from the information obtained from the one or more sensing devices coupled to the receiver.
Abstract:
A method of predicting positioning performance of a set of N access points in an indoor region includes: obtaining a signal-strength map including signal-strength vectors and corresponding locations in the indoor region, the signal-strength vectors each including N signal-strength indications that each indicate an expected received signal strength from a corresponding one of the set of N access points; and determining a position uncertainty value using the signal-strength map, the position uncertainty value being indicative of a positioning accuracy at a corresponding point of interest in the indoor region.
Abstract:
Methods and apparatus are described for providing location assistance information to a mobile device. An example of a method for providing location assistance information to the mobile device by a femto base station includes receiving a macro base station signal during a monitoring time period during which the femto base station is substantially stationary, obtaining location assistance information, the location assistance information being based, at least in part, on the received macro base station signal, and transmitting the location assistance information to the mobile device.
Abstract:
In a tracking of a position and motion of a device, a set of hypothetical locations of the device is generated. Hypothetical locations among the set are propagated to respective hypothetical next locations, using respective location-specific propagation models associated with the hypothetical locations. Sensor information having correlation to a location of the device is received. An importance weighting for the hypothetical next locations is calculated using the new sensor information. Probable locations of the device are generated using the importance weighting.
Abstract:
Systems, methods, and devices are described for estimating delay difference between two receive chains of a mobile device. The mobile device receives a first signal from a base station using a first receive chain, and receives a second signal using a second receive chain from a common, remote timing source for the base station and the mobile device. In addition, the mobile device obtains a transmit delay parameter associated with the base station and estimates, based at least in part on the transmit delay parameter, an offset value corresponding to a difference between amount of time for the first signal to pass through the first receive chain of the mobile device and amount of time for the second signal to pass through the second receive chain of the mobile device. The mobile device may store the offset value for subsequent use in estimating its position.