LONG SHORT-TERM MEMORY USING A SPIKING NEURAL NETWORK
    1.
    发明申请
    LONG SHORT-TERM MEMORY USING A SPIKING NEURAL NETWORK 审中-公开
    使用闪烁神经网络的长时间记忆

    公开(公告)号:US20160034812A1

    公开(公告)日:2016-02-04

    申请号:US14527679

    申请日:2014-10-29

    CPC classification number: G06N3/08 G06N3/049

    Abstract: A method for configuring long short-term memory (LSTM) in a spiking neural network includes decoding input spikes into analog values within the LSTM. The method further includes implementing the LSTM based on an encoded representation of the analog values. The implementing can include encoding the analog values using base expansive coding, rate coding, latency coding or synaptic weight coding.

    Abstract translation: 一种在尖峰神经网络中配置长时间短记忆(LSTM)的方法包括将输入尖峰解码为LSTM内的模拟值。 该方法还包括基于模拟值的编码表示来实现LSTM。 该实现可以包括使用基本扩展编码,速率编码,等待时间编码或突触权重编码对模拟值进行编码。

    METHODS AND APPARATUS FOR MODULATING THE TRAINING OF A NEURAL DEVICE
    4.
    发明申请
    METHODS AND APPARATUS FOR MODULATING THE TRAINING OF A NEURAL DEVICE 有权
    调制神经器械训练的方法和装置

    公开(公告)号:US20150052093A1

    公开(公告)日:2015-02-19

    申请号:US14079181

    申请日:2013-11-13

    CPC classification number: G06N3/08 G06N3/049

    Abstract: Methods and apparatus are provided for training a neural device having an artificial nervous system by modulating at least one training parameter during the training. One example method for training a neural device having an artificial nervous system generally includes observing the neural device in a training environment and modulating at least one training parameter based at least in part on the observing. For example, the training apparatus described herein may modify the neural device's internal learning mechanisms (e.g., spike rate, learning rate, neuromodulators, sensor sensitivity, etc.) and/or the training environment's stimuli (e.g., move a flame closer to the device, make the scene darker, etc.). In this manner, the speed with which the neural device is trained (i.e., the training rate) may be significantly increased compared to conventional neural device training systems.

    Abstract translation: 提供了用于通过在训练期间调制至少一个训练参数来训练具有人造神经系统的神经装置的方法和装置。 用于训练具有人造神经系统的神经装置的一个示例性方法通常包括在训练环境中观察神经装置并且至少部分地基于观察来调制至少一个训练参数。 例如,本文描述的训练装置可以修改神经装置的内部学习机制(例如,尖峰率,学习速率,神经调节器,传感器灵敏度等)和/或训练环境的刺激(例如,将火焰移动到设备附近 ,使场景更暗等)。 以这种方式,与传统的神经元装置训练系统相比,神经装置训练的速度(即,训练速率)可以显着增加。

    DIFFERENTIAL ENCODING IN NEURAL NETWORKS
    5.
    发明申请
    DIFFERENTIAL ENCODING IN NEURAL NETWORKS 审中-公开
    神经网络中的差分编码

    公开(公告)号:US20150269481A1

    公开(公告)日:2015-09-24

    申请号:US14513155

    申请日:2014-10-13

    CPC classification number: G06N3/0445 G06N3/0481 G06N3/049

    Abstract: Differential encoding in a neural network includes predicting an activation value for a neuron in the neural network based on at least one previous activation value for the neuron. The encoding further includes encoding a value based on a difference between the predicted activation value and an actual activation value for the neuron in the neural network.

    Abstract translation: 神经网络中的差分编码包括基于神经元的至少一个先前激活值来预测神经网络中神经元的激活值。 编码还包括基于预测的激活值和神经网络中的神经元的实际激活值之间的差来编码值。

    MODULATING PLASTICITY BY GLOBAL SCALAR VALUES IN A SPIKING NEURAL NETWORK
    6.
    发明申请
    MODULATING PLASTICITY BY GLOBAL SCALAR VALUES IN A SPIKING NEURAL NETWORK 审中-公开
    通过全球标量值在SPIKING神经网络中调制塑性

    公开(公告)号:US20150286925A1

    公开(公告)日:2015-10-08

    申请号:US14248211

    申请日:2014-04-08

    CPC classification number: G06N3/049 G06N3/08

    Abstract: A method for maintaining a state variable in a synapse of a neural network includes maintaining a state variable in an axon. The state variable in the axon may be updated based on an occurrence of a first predetermined event. The method also includes updating the state variable in the synapse based on the state variable in the axon and an occurrence of a second predetermined event.

    Abstract translation: 维持神经网络突触状态变量的方法包括维持轴突中的状态变量。 可以基于第一预定事件的发生来更新轴突中的状态变量。 该方法还包括基于轴突中的状态变量和第二预定事件的发生来更新突触中的状态变量。

    DYNAMIC SPATIAL TARGET SELECTION
    7.
    发明申请
    DYNAMIC SPATIAL TARGET SELECTION 审中-公开
    动态空间目标选择

    公开(公告)号:US20150242746A1

    公开(公告)日:2015-08-27

    申请号:US14325169

    申请日:2014-07-07

    Abstract: A method of dynamically modifying target selection with a neural network includes dynamically modifying a selection function by controlling an amount of imbalance of connections in the neural network. A selected neuron represents one of multiple candidate targets.

    Abstract translation: 用神经网络动态修改目标选择的方法包括通过控制神经网络中的连接的不平衡量来动态修改选择功能。 选择的神经元代表多个候选目标之一。

Patent Agency Ranking