Abstract:
A method for configuring long short-term memory (LSTM) in a spiking neural network includes decoding input spikes into analog values within the LSTM. The method further includes implementing the LSTM based on an encoded representation of the analog values. The implementing can include encoding the analog values using base expansive coding, rate coding, latency coding or synaptic weight coding.
Abstract:
A method for transmitting values in a neural network includes obtaining a parameter value. The method also includes encoding the parameter value based on at least one value used by a neuron. The encoding is based on a spike to be transmitted via a spike channel.
Abstract:
Values are synchronized across processing blocks in a neural network by encoding spikes in a first processing block with a value to be shared across the neural network. The spikes may be transmitted to a second processing block in the neural network via an interblock interface. The received spikes are decoded in the second processing block so as to generate a value that is synchronized with the value of the first processing block.
Abstract:
Methods and apparatus are provided for training a neural device having an artificial nervous system by modulating at least one training parameter during the training. One example method for training a neural device having an artificial nervous system generally includes observing the neural device in a training environment and modulating at least one training parameter based at least in part on the observing. For example, the training apparatus described herein may modify the neural device's internal learning mechanisms (e.g., spike rate, learning rate, neuromodulators, sensor sensitivity, etc.) and/or the training environment's stimuli (e.g., move a flame closer to the device, make the scene darker, etc.). In this manner, the speed with which the neural device is trained (i.e., the training rate) may be significantly increased compared to conventional neural device training systems.
Abstract:
Differential encoding in a neural network includes predicting an activation value for a neuron in the neural network based on at least one previous activation value for the neuron. The encoding further includes encoding a value based on a difference between the predicted activation value and an actual activation value for the neuron in the neural network.
Abstract:
A method for maintaining a state variable in a synapse of a neural network includes maintaining a state variable in an axon. The state variable in the axon may be updated based on an occurrence of a first predetermined event. The method also includes updating the state variable in the synapse based on the state variable in the axon and an occurrence of a second predetermined event.
Abstract:
A method of dynamically modifying target selection with a neural network includes dynamically modifying a selection function by controlling an amount of imbalance of connections in the neural network. A selected neuron represents one of multiple candidate targets.
Abstract:
Methods and apparatus are provided for effecting modulation using global scalar values in a spiking neural network. One example method for operating an artificial nervous system generally includes determining one or more updated values for artificial neuromodulators to be used by a plurality of entities in a neuron model and providing the updated values to the plurality of entities.