Abstract:
An electric motor controller is configured to be coupled to an electric motor. The controller includes an inverter and a control unit coupled to the inverter. The inverter is configured to receive an input voltage and to provide a conditioned output voltage to the electric motor. The control unit is configured to control the electric motor to produce positive torque when direct current (DC) link voltage has a 100% voltage ripple. Methods for controlling an electric motor using the electric motor controller are also provided.
Abstract:
Protection of an electric motor drive controller from a transient voltage is described herein. The transient voltage is provided by an alternating current (AC) power line that includes a line conductor, a neutral conductor, and a ground conductor. The transient voltage protection system includes a first stage protection device coupled to an input of a rectifier of the motor drive controller. The first stage protection device is configured to suppress the transient voltage to prevent damage to the motor drive controller. The transient voltage protection system also includes a second stage protection device coupled between the rectifier and an inverter of the motor drive controller. The second stage protection device is configured to further suppress the transient voltage to prevent damage to the inverter.
Abstract:
A motor controller coupled to a motor is provided. The motor controller includes a processor, a memory coupled to the processor, a first input coupled to the processor, wherein the first input is associated with a first mode of operation, and a second input coupled to the processor, wherein the second input is associated with a calibration mode. The motor controller is configured to receive, through the first input, a first activation signal, operate the motor in the first mode of operation in response to receiving the first activation signal, while operating the motor in the first mode of operation, receive, through the second input, a second activation signal, in response to receiving the first activation signal and the second activation signal, adjust a value of a parameter associated with the first mode of operation, and store the value of the parameter in the memory.
Abstract:
A motor controller is provided that includes an inverter configured to drive an electric motor, a rectifier configured to rectify an alternating current (AC) input current and to output the rectified AC input current to the inverter, and a controller coupled to the inverter. The controller is configured to improve a power factor of the motor controller by controlling the AC input current based on a direct current (DC) link voltage measurement.
Abstract:
A motor controller is provided that includes an inverter configured to drive an electric motor, a rectifier configured to rectify an alternating current (AC) input current and to output the rectified AC input current to the inverter, and a controller coupled to the inverter. The controller is configured to improve a power factor of the motor controller by controlling the AC input current based on a direct current (DC) link voltage measurement.
Abstract:
Protection of a motor controller from a transient voltage and/or an over-voltage condition is described. A drive circuit includes a rectifier portion and at least one inductive device coupled to the rectifier portion. The drive circuit further includes at least one voltage clamping device coupled in parallel with the at least one inductive device, and at least one switching device configured to open as a function of a direct current (DC) link voltage value.
Abstract:
A drive circuit is provided for reducing conducted electromagnetic interference provided by a power line to a motor controller. The drive circuit includes an EMI filter having first and second EMI filter input terminals, and first and second EMI filter output terminals. The first input terminal is configured to be coupled to a first AC line output and the second input terminal is configured to be coupled to a second AC line output. The drive circuit includes a rectifier portion having first and rectifier input terminals coupled to the first and second EMI output terminals, respectively. The drive circuit includes at least two series-coupled filter capacitors after the rectifier portion and a PFC choke coupled at a first end to one of the EMI filter output terminals and to one of the first and second rectifier input terminals, and at a second end between the series-coupled filter capacitors.
Abstract:
Protection of an electric motor drive controller from a transient voltage is described herein. The transient voltage is provided by an alternating current (AC) power line that includes a line conductor, a neutral conductor, and a ground conductor. The transient voltage protection system includes a first stage protection device coupled to an input of a rectifier of the motor drive controller. The first stage protection device is configured to suppress the transient voltage to prevent damage to the motor drive controller. The transient voltage protection system also includes a second stage protection device coupled between the rectifier and an inverter of the motor drive controller. The second stage protection device is configured to further suppress the transient voltage to prevent damage to the inverter.
Abstract:
Methods and systems for controlling an electric motor are provided. An electric motor controller is configured to be coupled to an electric motor. The controller includes a rectifier, an inverter coupled to the rectifier, and a control unit coupled to the inverter. The rectifier is configured to rectify an alternating current (AC) input voltage to produce a pulsed direct current (DC) voltage that drops to approximately zero during each cycle when the AC input voltage transits zero. Energy is stored on a load coupled to the motor when AC input voltage is available. The inverter is configured to receive the DC voltage and to provide a conditioned output voltage to the motor. The control unit is configured to manage energy transfer between the motor and the load such that the motor generates positive torque when the DC voltage supplied to the inverter has approximately 100% voltage ripple.
Abstract:
An electric motor controller is configured to be coupled to an electric motor. The controller includes an inverter and a control unit coupled to the inverter. The inverter is configured to receive an input voltage and to provide a conditioned output voltage to the electric motor. The control unit is configured to control the electric motor to produce positive torque when direct current (DC) link voltage has a 100% voltage ripple. Methods for controlling an electric motor using the electric motor controller are also provided.