摘要:
Techniques for supporting data transmission on the uplink in a wireless network are described. In an aspect, a user equipment (UE) may send a data transmission to a serving base station and may send uplink control information (UCI) to a non-serving base station. The UCI may include pertinent information to allow the non-serving base station to process the data transmission from the UE. In one design, the UCI may allow the non-serving base station to estimate the interference due to the data transmission from the UE and to cancel the interference at the non-serving base station. The interference cancellation may improve the received signal quality at the non-serving base station. After the interference cancellation, the non-serving base station may process a data transmission from another UE served by the base station.
摘要:
Systems and methodologies are described herein that facilitate interference measurement and reporting in a network multiple-in-multiple-out (N-MIMO) communication system. As described herein, a network device can measure and report interference corresponding to network nodes outside a designated set of nodes that can cooperatively serve the device. Respective interference reports can additionally identify dominant interfering nodes, correlation between transmit antennas of respective nodes, or the like. Subsequently, respective interference reports can be combined with per-node channel information to manage coordination and scheduling across respective network nodes. As further described herein, interference from a network node can be measured by observing reference and/or synchronization signals from the network node. To aid such observation, respective non-interfering network nodes can define null pilot intervals in which transmission is silenced or otherwise reduced. As additionally described herein, loading information broadcasted by respective interfering network nodes can be identified and utilized in connection with interference calculation.
摘要:
Systems and methodologies are described herein that facilitate interference measurement and reporting in a network multiple-in-multiple-out (N-MIMO) communication system. As described herein, a network device can measure and report interference corresponding to network nodes outside a designated set of nodes that can cooperatively serve the device. Respective interference reports can additionally identify dominant interfering nodes, correlation between transmit antennas of respective nodes, or the like. Subsequently, respective interference reports can be combined with per-node channel information to manage coordination and scheduling across respective network nodes. As further described herein, interference from a network node can be measured by observing reference and/or synchronization signals from the network node. To aid such observation, respective non-interfering network nodes can define null pilot intervals in which transmission is silenced or otherwise reduced. As additionally described herein, loading information broadcasted by respective interfering network nodes can be identified and utilized in connection with interference calculation.
摘要:
Systems and methodologies are described that facilitate indicating a dominant interferer to a target serving base station in a wireless communication environment. A mobile device can detect presence or absence of a dominant interferer. Further, an access probe that includes information related to the presence or absence of the dominant interferer can be generated. For example, the information can be included in a payload of the access probe as an explicit flag, an explicit indication of an interference level, a Channel Quality Indicator (CQI) value (e.g., reserved versus non-reserved, . . . ), etc. Moreover, the access probe can be transmitted to the target serving base station to initiate an access procedure. The target serving base station can select a time-frequency resource to be utilized for a responsive downlink transmission (e.g. access grant signal, subsequent access related message, . . . ) as a function of the information included in the access probe.
摘要:
Systems and methodologies are described that facilitate indicating a dominant interferer to a target serving base station in a wireless communication environment. A mobile device can detect presence or absence of a dominant interferer. Further, an access probe that includes information related to the presence or absence of the dominant interferer can be generated. For example, the information can be included in a payload of the access probe as an explicit flag, an explicit indication of an interference level, a Channel Quality Indicator (CQI) value (e.g., reserved versus non-reserved, . . . ), etc. Moreover, the access probe can be transmitted to the target serving base station to initiate an access procedure. The target serving base station can select a time-frequency resource to be utilized for a responsive downlink transmission (e.g. access grant signal, subsequent access related message, . . . ) as a function of the information included in the access probe.
摘要:
Techniques for managing interference in a wireless network are described. A base station may receive enhanced pilot measurement reports from user equipments (UEs) and may make an interference management decision based on the received reports. The base station may select a serving base station for a UE based on an enhanced pilot measurement report received from the UE. The base station may determine resources with a low target interference level at a neighbor base station and may avoid scheduling a UE for uplink transmission on the resources. The base station may also determine whether to reserve resources for a neighbor base station based on data performance of the neighbor base station, whether the neighbor base station observes high interference from UEs served by the base station, or whether UEs served by the neighbor base station observe high interference from the base station, which may be determined based on the enhanced pilot measurement reports.
摘要:
Systems and methods that designate a control attachment point(s) during transmission of data in a Coordinated Multipoint (CoMP) system. The control attachment point is represented by an anchor cell to address control signaling and represent a User Equipment's (UE) interaction with the wireless communication system from a perspective of control (e.g., supplying/sending grants to the UE, transmitting/receiving ACKS on the downlink/uplink to the UE, control information (CQI), and the like.) The cells can further engage in backhaul transfer of information therebetween, and dynamic switching/change of anchor point based on criteria such as control loading, channel quality, and the like can further be implemented.
摘要:
Techniques for managing interference in a wireless network are described. A base station may receive enhanced pilot measurement reports from user equipments (UEs) and may make an interference management decision based on the received reports. The base station may select a serving base station for a UE based on an enhanced pilot measurement report received from the UE. The base station may determine resources with a low target interference level at a neighbor base station and may avoid scheduling a UE for uplink transmission on the resources. The base station may also determine whether to reserve resources for a neighbor base station based on data performance of the neighbor base station, whether the neighbor base station observes high interference from UEs served by the base station, or whether UEs served by the neighbor base station observe high interference from the base station, which may be determined based on the enhanced pilot measurement reports.
摘要:
Techniques for supporting data transmission on the uplink in a wireless network are described. In an aspect, a user equipment (UE) may send a data transmission to a serving base station and may send uplink control information (UCI) to a non-serving base station. The UCI may include pertinent information to allow the non-serving base station to process the data transmission from the UE. In one design, the UCI may allow the non-serving base station to estimate the interference due to the data transmission from the UE and to cancel the interference at the non-serving base station. The interference cancellation may improve the received signal quality at the non-serving base station. After the interference cancellation, the non-serving base station may process a data transmission from another UE served by the base station.
摘要:
Systems and methods that designate a control attachment point(s) during transmission of data in a Coordinated Multipoint (CoMP) system. The control attachment point is represented by an anchor cell to address control signaling and represent a User Equipment's (UE) interaction with the wireless communication system from a perspective of control (e.g., supplying/sending grants to the UE, transmitting/receiving ACKS on the downlink/uplink to the UE, control information (CQI), and the like.) The cells can further engage in backhaul transfer of information therebetween, and dynamic switching/change of anchor point based on criteria such as control loading, channel quality, and the like can further be implemented.